
Министерство науки и высшего образования Российской Федерации 
Федеральное государственное бюджетное 

образовательное учреждение высшего образования 
«Уфимский государственный авиационный технический университет» 

И. В. КИРСАНОВА 

PROFESSIONAL ENGLISH  
FOR SOFTWARE DEVELOPERS 

Уфа 2022	



Министерство	науки	и	высшего	образования	Российской	Федерации	
Федеральное	государственное	бюджетное	

образовательное	учреждение	высшего	образования	
«Уфимский	государственный	авиационный	технический	университет»	

И.	В.	КИРСАНОВА	

PROFESSIONAL ENGLISH  
FOR SOFTWARE DEVELOPERS 

Допущено	Редакционно‐издательским	советом	УГАТУ	
в	качестве	учебного	пособия	для	студентов	очной	и	заочной	форм	обучения,		
	обучающихся	по	направлению	подготовки	бакалавров	и	магистрантов	

09.03.04,	09.04.04	Программная	инженерия	

Учебное	электронное	издание	сетевого	доступа	

©	УГАТУ	
ISBN 978-5-4221-1597-6 

Уфа	2022	



Рецензенты:	
декан	факультета	математики	и	информационных	технологий	БашГУ		

	д‐р	физ.‐мат.	наук,	профессор	З.	Ю.	Фазуллин;		
	доцент	кафедры	русского	языка	и	иностранных	языков		
ГБОУ	ВО	«БАГСУ»	при	Главе	Республики	Башкортостан 		

канд.	филол.	наук	В.	Р.	Габдуллина		

		Кирсанова	И.	В.		
Professional	 english	 for	 software	 developers	 :	 учебное	 пособие	

[Электронный	ресурс]	/	Уфимск.		гос.		авиац.	техн.	ун‐т.	–	Уфа	:	УГАТУ,	2022.	–	
URL:	 https://www.ugatu.su/media/uploads/MainSite/Ob%20universitete/	
Izdateli/	El_izd	/2022‐117.pdf		

Предназначено	 для	 совершенствования	 речевых	 навыков	 	 и	
развития	 умений	 профессионально‐ориентированного	 иноязычного	
общения	в	устной	и	письменной	формах,	чтения	и	перевода	оригинальных	
английских	 текстов,	 соответствующих	 направлению	 подготовки	
IT‐специалистов.	 Тексты	 снабжены	 упражнениями	 с	 использованием	
элементов	 функционально‐коммуникативного	 обучения	 английскому	
языку,	 а	 также	 ссылками	 на	 видеоматериалы	 и	 заданиями	 для	
самостоятельной	работы	студентов.	

	
Предназначено	 для	 студентов	 и	 магистрантов,	 изучающих	

дисциплину	 «Иностранный	 язык	 в	 профессиональной	 деятельности» 
а также		для	студентов,	связанных	с	информационными	технологиями.			

,



При	подготовке	электронного	издания	использовались	следующие	
программные	средства:	

 Adobe	Acrobat	−	текстовый	редактор;
 Microsoft	Word	–	текстовый	редактор.

Автор:	Кирсанова	Инна	Вячеславовна	

Редактирование	и	верстка:		О.	А.	Соколова	
Программирование	и	компьютерный	дизайн:		О.М.	Толкачёва	

Все права защищены. Книга или любая ее часть не может быть скопирована,  
воспроизведена в электронной или механической форме, в виде фотокопии,  
записи в память ЭВМ, репродукции или каким-либо иным способом, а также 
 использована в любой информационной системе без получения разрешения  
от издателя. Копирование, воспроизведение и иное использование книги  
или ее части без согласия издателя является незаконным и влечет  
уголовную, административную и гражданскую ответственность. 

Подписано	к	использованию: 30.06.2022 
Объем: 2,7 Мб. 		

ФГБОУ	ВО	«Уфимский	государственный	авиационный	технический	университет»	
450008,	Уфа,	ул.	К.	Маркса,	12.	

Тел.:	+7‐908‐35‐05‐007	
e‐mail:	rik@ugatu.su	



PREFACE 
 

The textbook ‘Professional English for Software Developers’ is 
intended as a manual for the students who have chosen software 
engineering as the sphere of their specialization. They will be able to  
acquire and master  communication skills in English and use them 
effectively in their  professional field.  Thus,  the main objective of the 
textbook  is to develop learners’ ability to use the English language for a 
variety of communicative purposes. 

The manual also allows you to organize students’ independent work  
to master the English language and form  intercultural communication of 
future specialists. From the very beginning of the unit the students are 
given the opportunity to work independently with the topical vocabulary. 

The book contains 12 units and texts for additional reading. These 
texts can be recommended for testing and controlling text comprehension 
and translation skills. Each unit contains a sufficient number of lexical 
exercises, different tasks  for discussions, suggested topics for writing 
reports and making presentations. Lexical and grammar tasks ‘English for 
Software Development’ have been developed according to modern 
principles of learning and teaching foreign languages. Grammar Revision 
tasks are presented in tables and a wide range of grammar tasks on 
transformation, translation and sentence completion tasks by using 
grammar patterns is also very useful for learning and using the English 
language in practice. 

We hope that these tasks can be a good way to let students and 
Master students practice a wide variety of language skills. In turn teachers 
may engage students in authentic language practice experiences, 
supporting their learning strategies and critical thinking development. 

In conclusion, we wish you success in your learning English for 
professional purposes! 

 
 
 
 
 
 

 
 



UNIT 1. Introduction to Software Engineering 
-------------------------------------------------------------------------------- 
 
Learning objectives 
 to acquire basic knowledge about software engineering and its types 
 to understand if all software requires software engineering 

 
Key words and phrases. Give Russian equivalents and remember the 
meanings of the key words and phrases used in the text 
 

Сoncept; to be complicated; application; definition; tools; security 
risks; vulnerability; operational software engineering; transitional 
software engineering; recurrent; lifecycle; implementation; 
maintenance; retirement; to be congruent;  stand-alone applications; 
interactive transaction-based applications; embedded control systems; 
batch processing systems 

 
Read the following text and do the exercises given after it  

 
 Software engineering is a concept in and of itself, but to better 

understand it, you need to know what each part of the term means before 
you can fully understand how they operate together. It can be difficult to 
understand, even though it does seem straightforward. That is because the 
pieces are more complicated than many believe - and working with 
software engineering for an application is difficult and time-consuming. 
Software engineering has two parts: software and engineering. 

Software is a collection of codes, documents, and triggers that does a 
specific job and fills a specific requirement. 

Engineering is the development of products using best practices, 
principles, and methods. 
  

What is Software Engineering?  
 It is a branch of engineering that deals with the development of 

software products. It operates within a set of principles, best 
practices, and methods that have been carefully honed throughout 
the years, changing as software and technology change. 

 

Software engineering leads to a product that is reliable, efficient, and 
effective at what it does. While software engineering can lead to products 



that do not do this, the product will almost always go back into the 
production stage. So, what is the complete definition of software 
engineering? 

The IEEE fully defines software engineering as: 
1. The application of a systematic, disciplined, quantifiable approach to the 
development, operation, and maintenance of software; that is, the 
application of engineering to software. 
What the software engineering meaning doesn’t explain is that everything 
that has been software engineered needs to work on real machines in real 
situations, not within. 

Software engineering starts when there is a demand for a specific 
result or output for a company, from an application. From somewhere on 
the IT team, typically the CIO, there is a request put into the developer to 
create some sort of software. The software development team breaks down 
the project into the requirements and steps. Sometimes, this work will be 
farmed out to independent contractors, vendors, and freelancers. When this 
is the case, software engineering tools help to ensure that all of the work 
done is congruent and follows best practices. 

How do developers know what to put into their software? They break 
it down into specific needs after conducting interviews, collecting 
information, looking into the existing application portfolio, and talking to 
IT leaders. Then, they will build a roadmap of how to build the software. 
This is one of the most important parts because much of the “work” is 
completed during this stage - which also means that any problems 
typically occur here as well. 

The true starting point is when developers begin to write code for the 
software. This is the longest part of the process in many cases as the code 
needs to be congruent with current systems and the language used in them. 
Unfortunately, these problems often aren’t noticed until much later on in 
the project and then rework needs to be completed. 

The code should be tested as it is written and once it has been 
completed – at all parts of the life cycle. With software engineering tools, 
you will be able to continuously test and monitor. 

 
Software Engineering Basics 

The true work of software engineering begins before the product has 
even been designed – and the software engineering basics dictate that it 
continues long after the “work” has been completed. It all begins with a 



thorough and complete understanding of what your software needs to have 
– this includes what the software needs to do, the system in which it needs 
to operate, and all of the security that it entails. Security is one of the 
software engineering basics because it is so essential to all aspects of 
development. Without tools to help you better understand how your code 
is being built and where any security problems may fall, your team can 
easily become lost in the development stage. 

Software engineering design basics require creating the instructions 
for the computer and the systems. Much of this will take place at the 
coding level by professionals who have comprehensive training. Still, it is 
important to understanding that software engineering isn’t always a linear 
process, which means that it requires thorough vetting once it has been 
completed. 

Not all software requires software engineering. Simplistic games or 
programs that are used by consumers may not need engineering, 
depending on the risks associated with them. Almost all companies do 
require software engineering because of the high-risk information that they 
store and security risks that they pose. 

Software engineering helps to create customized, personalized 
software that should look into vulnerabilities and risks before they even 
emerge. Even when the software engineering principles of safety aren’t 
required, it can also help to reduce costs and improve customer experience. 

 
Types of Software Engineering 

Software engineering studies the design, development, and 
maintenance of software as an umbrella definition. Still, there are different 
types of software engineering that a company or product may need. 
Problems tend to emerge when software is low-quality or isn’t properly 
vetted before deployment. 

There has been a lot of demand for software engineers because of the 
rate of change in user requirements, statutes, and the platforms we use. 
Software engineering works on a few different levels: 
Operational Software Engineering: Software engineering on the 
operational level focuses on how the software interacts with the system, 
whether or not it is on a budget, the usability, the functionality, the 
dependability, and the security. 
Transitional Software Engineering: This type focuses on how software 
will react when it is changed from one environment to another. It typically 



takes some scalability or flexibility in the development. 
Software Engineering Maintenance: Recurrent software engineering 
focuses on how the software functions within the existing system, as all 
parts of it change. 

Software engineering functions at all parts of the software 
development lifecycle, including analysis, design, development, testing, 
integration, implementation, maintenance, and even retirement. 

It is important to understand that software engineering isn’t a new 
practice, but it is constantly changing and can feel new on a regular basis. 
Software is used in everything around us, so it is important to ensure that 
all software is working properly. If it does not, it can result in loss of 
money, loss of reputation, and even in some cases, loss of life.  

 
[https://www.castsoftware.com/glossary/what-is-software-engineering-definition-

types-of-basics-introduction] 
Want a personal walk https://w -introduction thru? 

1. Text-based Assignments 
 

1.1. Make nouns from the following verbs according to the model and 
translate them 
Verb+-tion (-ation)  

Inform, create, connect, integrate, explore, prepare, destine, realize, 
associate, implement, operate. 

 
1.2. Give English equivalents of the following words and word 

combinations: 
 

Казаться простым; кропотливый, занимающий много времени; 
конкретное требование; оттачиваться на протяжении многих лет; 
полное определение; проблемы безопасности; тщательная проверка; 
ассоциироваться с чем-л.; сократить расходы; появляться; 
всеохватывающее определение; потребность; взаимодействовать с  
системой; операционное ПО; переходная (переход с одной 
платформы на другую)  разработка ПО; техническое обслуживание; 
количественный подход; отправная точка. 
 
 
 



1.3. Match the following  words with their definitions:  
 

1. High 
technology 

a) the range of operations that can be run on a 
computer or other electronic system 

2. ngineering b) come into existence or greater prominence 
3. functionality c) take or use another instead of 
4. change d) instructions for a computer in some programming 

language, often machine language 
5. emerge e) advanced technological development, especially in 

electronics 
6. code f) a field of study or activity concerned with 

modification or development in a particular area 
7. application   
developer 

g) a position or stage on a scale of quantity, extent, 
rank, or quality 

8. level 
 

h) а person who writes computer programs to meet 
specific requirements 

 
1.4. Answer the following questions on the text 
 
1) What does software engineering deal with? 
2) What is the starting point for developers? 
3) Does all software require software engineering? 
4) How can you explain the importance of software engineering? 
5) What are the types of software engineering? 
6) Software engineering functions at all parts of the software 

development, doesn’t it? 
 
1.5. Read the text again and decide if the following statements are true 

or false. 
 
1) Software engineering  is a branch of engineering that deals with the 

development of software products and security problems are the most 
important for developers. 

2) Software engineering leads to a product that is reliable, efficient, and 
effective at what it does. 

3) All software requires software engineering. 
4) Problems tend to emerge even if software is high-quality and is 

properly vetted before deployment. 



5) Software engineering functions at four parts of the software 
development lifecycle, including analysis, design, development, 
testing. 

6) Software engineering isn’t a new practice, but it is constantly changing 
and can feel new on a regular basis. 

7) Software engineering isn’t always a linear process, which means that it 
requires thorough vetting once it has been completed. 

 
2. Focus on Grammar 

 
2.1. Choose one of the verbs in brackets. Put them into the necessary  
form to complete the following sentences 
 

1) A lot of humans (be, have, do) dependent on technology today, 
which will (be, have, do) bad to them.  

2) I (be, have, do) had my iPad for years now and I (be, have, do) very 
happy with it. 

3) Because I (be, have, do) not have the chance to speak to my boss 
yesterday I (be, have, do) to text her in Viber. 

4) The 21st century (be, have, do) the age of cutting-edge technologies. 
5) They (do, be, have) doing research work on the latest applications for  

mobile devices. 
6) All books can (be, do, have) read online. 
7) We (be, have, do) not see any downsides in using personal computers 

at all. 
8) They (be, have, do) surfing the Internet all day yesterday. 
9) Every day Linda (be, do, have) a lot of exercise to keep fit. 
10) Safari browser online tutorial (be, do, have) provided the user with  

help and support in using it. 
 

2.2. Identify passive structures and translate the sentences 
 
Все времена в страдательном залоге образуются из вспомогательного 
глагола to be в соответствующем лице числе и времени и смыслового 
глагола в форме причастия прошедшего времени /Participle II/. 
 

1) This method has been referred to in an earlier paper.  
2) I do not think this instrument can be relied upon.  



3) In operational categories, the factors that decide the software 
performance in operations. It can be measured on: budget, usability, 
efficiency and correctness. 

4) If the job is entered without errors it will be chosen for execution. 
5) This electronic equipment has been designed for speeding up 

production. 
6) Business variables have been and are being expressed as 

mathematical functions and are being statistically analyzed. 
7) Even when the software engineering principles of safety aren’t 

required, it can also help to reduce costs and improve customer 
experience. 

8) This interview was also recorded as a video podcast. Check out the 
video on the Software Daily YouTube channel. 

9) The code should be tested as it is written and once it has been 
completed – at all parts of the life cycle. 

   
3. Discussion 

 
3.1. Possible topics for discussion 
 

1) What are the attributes of good software? What is your idea of it? 
2) What is the difference between software engineering and computer 

science? 
3) Do you agree? Why/why not? 
4) What is interesting for you in this branch of engineering? 

 
3.2. Write a short summary of the text about software engineering 
 
3.3. Make up and dramatize a dialogue using the top interview questions 
for software engineers 
 

Hiring a software engineer is a process that should be approached 
carefully and with deliberation. A good software engineer will help your 
company grow, but one that does not have the right skills or a good work 
ethic can slow down and hinder your growth. 

Therefore, you should know the best questions to ask during the 
hiring process to successfully recruit software engineers. 

 



1) Why did you decide to become a software engineer? 
2) What programming languages do you prefer? 
3) What’s important when checking a team member’s code?  
4) What project management tools have you used? 
5) Talk about a project you completed successfully. 
6)  What are you looking for in this job? 
7) Why should we hire you? 
8) How did you solve a problem you faced? 
9) What are you working on right now? 
10) How do you assure software quality? 
11) Do you enjoy working with a team or alone? 
12) What are your career goals? 
13) How do you keep your skills sharp and up to date? 
14) What questions do you have for us? 

 
3.4. Write your comments on the following topic How to Become an 
Expert Software Engineer (and Get Any Job You Want) 
 
Future Selection Ideas > How to Become an Expert Software Engineer 
(and Get Any Job You Want) 
 

 
 

Hi all! A few years ago, working for Canonical Ltd. on the world’s 
most popular Linux distribution: Ubuntu, seemed like just a dream to 
me… For over 2 years now, I’ve been living that dream! 
 
Achieving my dream job inspired me to write a book to help others make 
their dreams a reality too. The book is called: “How to Become an Expert 
Software Engineer (and Get Any Job You Want)”. It helps readers build 
impressive résumés by introducing them to the world of free and open 
source software development as a means of acquiring new skills and 
gaining focused, real world work experience. 
 
I’d really love to hear what you guys thought of it! [11]. 

 
 
 
 

 



4. Additional reading 
 
4.1. Read and translate the following text and suggest the title  
 

Software engineering is a systematic approach to the production of 
software that takes into account practical cost, schedule, and dependability 
issues, as well as the needs of software customers and producers. How this 
systematic approach is actually implemented varies dramatically 
depending on the organization developing the software, the type of 
software, and the people involved in the development process. There are 
no universal software engineering methods and techniques that are suitable 
for all systems and all companies. Rather, a diverse set of software 
engineering methods and tools has evolved over the past 50 years. Perhaps 
the most significant factor in determining which software engineering 
methods and techniques are most important is the type of application that 
is being developed.  

There are many different types of application including:  
1. Stand-alone applications are application systems that run on a 

local computer, such as a PC. They include all necessary functionality and 
do not need to  be connected to a network. Examples of such applications 
are office applications on a PC, CAD programs, photo manipulation 
software, etc.  

2. Interactive transaction-based applications are applications that 
execute on a remote computer and that are accessed by users from their 
own PCs or terminals. Obviously, these include web applications such as 
e-commerce applications where you can interact with a remote system to 
buy goods and services. This class of application also includes business 
systems, where a business provides access to its systems through a web 
browser or special-purpose client program and cloud-based services, such 
as mail and photo sharing. Interactive applications often incorporate a 
large data store that is accessed and updated in each transaction.  

3. Embedded control systems are software control systems that 
control and manage hardware devices. Numerically, there are probably 
more embedded systems than any other type of system. Examples of 
embedded systems include the software in a mobile (cell) phone, software 
that controls anti-lock braking in a car, and software in a microwave oven 
to control the cooking process.  

 



4. Batch processing systems are business systems that are designed to 
process data in large batches. They process large numbers of individual 
inputs to create corresponding outputs. Examples of batch systems include 
periodic billing systems, such as phone billing systems, and salary 
payment systems.  

5. Entertainment systems are systems that are primarily for  
personal use and which are intended to entertain the user. Most of these 
systems are games of one kind or another. The quality of the user 
interaction offered is the most important distinguishing characteristic of 
entertainment systems.  

6. Systems for modeling and simulation are systems that are 
developed by scientists and engineers to model physical processes or 
situations, which include many, separate, interacting objects. These are 
often computationally intensive and require high-performance parallel 
systems for execution.  

7. Data collection systems are systems that collect data from their 
environment using a set of sensors and send that data to other  
systems for processing. The software has to interact with sensors and often 
is installed in a hostile environment such as inside an engine or in  
a remote location. 8. Systems of systems are systems that are composed of 
a number of other software systems. Some of these may  
be generic software products, such as a spreadsheet program.  
Other systems in the assembly may be specially written for that 
environment.  

Of course, the boundaries between these system types are blurred. If 
you develop a game for a mobile (cell) phone, you have to take into 
account the same constraints (power, hardware interaction) as the 
developers of the phone software. Batch processing systems are often used 
in conjunction with web-based systems. For example, in a company, 
 travel expense claims may be submitted through a web application but 
processed in a batch application for monthly payment. You use different 
software engineering techniques for each type of system because 
 the software has quite different characteristics. For example,  
an embedded control system in an automobile is safety-critical and is 
burned into ROM when installed in the vehicle. It is  
therefore very expensive to change. Such a system needs very extensive 
verification and validation so that the chances of having to recall  
cars after sale to fix software problems are minimized.  



User interaction is minimal (or perhaps nonexistent) so there  
is no need to use a development process that relies on user interface 
prototyping .[10] 

 
 

4.2. Explain each type of applications in your own words  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



UNIT 2. What is Software? Types of Software 
------------------------------------------------------------------------------------------ 
Learning objectives 
 to understand what software is and how it works
 to acquire basic knowledge about different types of software
 to understand the difference between system software and

application software

Key words and phrases. Give Russian equivalents and remember the 
meanings of the key words and phrases. 

Application software; system software; to execute; scripts; language 
processor; middleware; assemblers; compilers; debuggers; 
interpreters; source code; computer's hard drive;  high-level 
application software; to boot up; to run on a device; image editors; 
object code; to launch 

Before reading the text B watch the video from  https://www. 
https://searchapparchitecture.techtarget.com/definition/software to get 
some information on the topic 

Read the following text and do the exercises given after it  

Software is a set of instructions, data or programs used to operate 
computers and execute specific tasks. It is the opposite of hardware, which 
describes the physical aspects of a computer. Software is a generic term 
used to refer to applications, scripts and programs that run on a device. It 
can be thought of as the variable part of a computer, while hardware is the 
invariable part. 

The two main categories of software are application software and 
system software. Application software is a computer software package 
that performs a specific function for a user, or in some cases, for another 
application. An application can be self-contained, or it can be a group of 
programs that run the application for the user. Examples of modern 
applications include office suites, graphics software, databases and 
database management programs, web browsers, word processors, software 
development tools, image editors and communication platforms.  



System software is designed to run a computer's hardware and 
provides a platform for applications to run on top of. System software 
coordinates the activities and functions of the hardware and software. In 
addition, it controls the operations of the computer hardware and provides 
an environment or platform for all the other types of software to work in. 
The OS is the best example of system software; it manages all the other 
computer programs. Other examples of system software include the 
firmware, computer language translators and system utilities. 

Other types of software include programming software, which 
provides the programming tools software developers need; middleware, 
which sits between system software and applications; and driver software, 
which operates computer devices and peripherals. 

Language Processor: As we know that system software converts the 
human-readable language into a machine language and vice versa. So, the 
conversion is done by the language processor. It converts programs written 
in high-level programming languages like Java, C, C++, Python, 
etc.(known as source code), into sets of instructions that are easily 
readable by machines (known as object code or machine code). 

Driver software. Also known as device drivers, this software is 
often considered a type of system software. Device drivers control the 
devices and peripherals connected to a computer, enabling them to 
perform their specific tasks. Every device that is connected to a computer 
needs at least one device driver to function. Examples include software 
that comes with any nonstandard hardware, including special game 
controllers, as well as the software that enables standard hardware, such as 
USB storage devices, keyboards, headphones and printers. 

Middleware. The term middleware describes software that mediates 
between application and system software or between two different kinds of 
application software. For example, middleware enables Microsoft 
Windows to talk to Excel and Word. It is also used to send a remote work 
request from an application in a computer that has one kind of OS, to an 
application in a computer with a different OS. It also enables newer 
applications to work with legacy ones. 

Programming software. Computer programmers use programming 
software to write code. Programming software and programming tools 
enable developers to develop, write, test and debug other software 
programs. Examples of programming software include assemblers, 
compilers, debuggers and interpreters. 



Software stack 
Application 

(such as a CRM or ERP tool) 
Middleware 

(applications such as a database) 
OS UI 

OS services 
OS drivers and runtimes 

Hypervisor (optional) 
Firmware (BIOS) 

Hardware 
 

Fig.1. Here is a complete picture of the full software stack 
 
How does software work? 

Application software consists of many programs that perform 
specific functions for end users, such as writing reports and navigating 
websites. Applications can also perform tasks for other applications. 
Applications on a computer cannot run on their own; they require a 
computer's OS, along with other supporting system software programs, to 
work. 

These desktop applications are installed on a user's computer and use 
the computer memory to carry out tasks. They take up space on the 
computer's hard drive and do not need an internet connection to work. 
However, desktop applications must adhere to the requirements of the 
hardware devices they run on. 

Web applications, on the other hand, only require internet access to 
work; they do not rely on the hardware and system software to run. 
Consequently, users can launch web applications from devices that have a 
web browser. Since the components responsible for the application 
functionality are on the server, users can launch the app from Windows, 
Mac, Linux or any other OS. 

System software sits between the computer hardware and the 
application software. Users do not interact directly with system software as 
it runs in the background, handling the basic functions of the computer. 
This software coordinates a system's hardware and software so users can 
run high-level application software to perform specific actions. System 
software executes when a computer system boots up and continues running 
as long as the system is on. 

 



System software vs. application software 
 

System software Application software 
General-purpose software that 

manages basic system resources and 
processes 

System software that performs 
specific tasks to meet user needs 

Written in low-level assembly 
language or machine code 

Written in high-level languages, such 
as Python or JavaScript 

Must meet specific hardware needs; 
interacts closely with hardware 

Does not take hardware into account 
and doesn’t interact directly with 

hardware 
Installed at the same time as the OS, 

usually by the manufacturer 
User or admin installs software when 

needed 
Runs any time the computer is on User triggers and stops the program 

Works in the background and users do 
not usually access it 

Runs in the foreground and users 
work directly with the software to 

perform specific tasks 
Runs independently Needs system software to run 

Is necessary for the system to function Isn’t needed for the system to 
function 

 
Fig. 2. The key differences between system and application software 

 
Early software was written for specific computers and sold with the 

hardware it ran on. In the 1980s, software began to be sold on floppy 
disks, and later on CDs and DVDs. Today, most software is purchased and 
directly downloaded over the internet. Software can be found on vendor 
websites or application service provider websites. 

[https://searchapparchitecture.techtarget.com/definition/software] 
 

 
1. Text-based Assignments 

 
1.1. Give English equivalents of the following words and word 

combinations: 
 
Управление базами данных; неизменяемая часть; самостоятельный 
(автономный); текстовый редактор с расширенными возможностями 
форматирования; предоставлять платформу; микропроцессорное 
программное обеспечение; периферийные устройства; набор команд; 
межплатформное ПО, обеспечивающее прозрачную работу 



приложений в неоднородной сетевой среде; наушники; посылать 
запрос; выполнять задачи; работать непосредственно с системным 
ПО

1.2. Write a sentence with each word to illustrate its meaning 

a) to provide – provider
b) to vary – invariable – variation
c) specific – specification – to specify
d) to require – requirement
e) to execute – execution – executable

1.3. Match the following words from the text with their meanings 

Self-contained, vendor, machine language, functionality, 
application, platform, to perform 

a) the range of operations that can be run on a computer or other
electronic system;

b) not depending on or influenced by others;
c) to work, to function, or do something to a specified standard;
d) machine code;
e) a standard for the hardware of a computer system, which determines

the kinds of software it can run;
f) a seller, particularly of real property;
g) a program or piece of software designed to fulfill a particular

purpose.

1.4. Answer the following questions on the text 

1) What is system software designed for?
2) What types or categories does software include?
3) What is the other name of driver software?
4) Are assemblers and compilers the examples of programming

software or middleware?
5) What can you say about desktop applications?
6) What more would you like your software to do?



1.5. Read the text again and decide if the following statements are true or 
false.  
 

1) Software is the opposite of hardware, which describes the physical 
aspects of a computer and it can be thought of as the variable part of 
a computer, while hardware is the invariable part. 

2) An application can never be a group of programs that run the 
application for the user. 

3) Communication platform is one of the examples of modern 
applications. 

4)  System software coordinates the activities and functions of software. 
5) C++ is one of the low level programming languages. 
6) Every device that is connected to a computer doesn’t need any device 

driver to function. 
7) Since the components responsible for the application functionality 

are on the server, users can launch the app from Windows, Mac, 
Linux or any other OS. 

8) In the 1990s, software began to be sold on floppy disks, and later on 
CDs and DVDs. 
 

2. Focus on Grammar 
 

2.1. Complete the following sentences  and translate them (mind the modal 
verb)  
 

1) Our manager ________ solve many complicated practical problems 
last month (had to, is to, can, must).  

2) Now he _______ study this phenomenon (may, is to, could).  
3) He ________ a jet engine in action many years ago (can’t see, 

couldn’t have seen, might have seen).  
4) Users _____launch the app from Windows, Mac, Linux or any other 

OS (must have, can, couldn’t). 
5) Desktop applications _____ adhere to the requirements of the 

hardware devices they run on (are allowed to, must, mustn’t). 
6) Software ______ be found on vendor websites or application service 

provider websites (can’t, have to, can, must). 



7)  For example, without your Internet browser software, you 
______surf the Internet and read this article (mustn’t, could not, may 
not). 

8) The business growth comes together with a rise in the amount of data 
that _____ administered, which results in the need to manage all that 
information that is continuously growing successfully (can, can’t be, 
should be).  
 

2.2. Study the table and make up your own sentences to demonstrate the 
following modal  meanings 
 

a) must, may и might + 
Perfect Infinitive 

Выражают возможность 
или вероятность действия, 
относящегося к прошлому 
и обычно переводятся 
словами «должно быть, 
возможно». 
 

He must have lost his 
book somewhere. Он, 
должно быть, потерял 
свою книгу где-то. 

b) can / could +not + 
Perfect Infinitive 

Выражают сомнение в 
возможности совершения 
действия в прошлом и 
обычно переводятся при 
помощи слов «не может 
быть».  
 

Не cannot have made 
such a serious mistake. Не 
может быть, чтобы он 
допустил такую 
серьезную ошибку.  
 

c) ought (to), should, 
could, might + Perfect 
Infinitive 

Указывают на то, что 
действие, которое могло 
или должно было бы 
совершиться, не 
совершилось.  
 

You should have changed 
the current strength at all 
points of the circuit. Вам 
следовало бы изменить 
силу тока во всех точках 
цепи. 

 
2.3. Translate the following sentences with modal verbs in combination 
with Perfect Infinitives 

 
1) They must have lost their way, as they appeared in the village only at 

night.  
2) He cannot have entrusted this scientific work to a man he has known 

for such a short period of time.  
3) She rested her eyes on him thinking of all things he must have done 

since she saw him last.  



4) You could not have seen him there because he left the place two 
months ago.  

5) There are so many mistakes in your exercises. You should have been 
more attentive.  

6) In the morning I did not find him in his room, he must have gone 
leaving no note for us.  

7) She might have overlooked something that may turn out to be 
important in proving his innocence.  

8) In the fewest words he told them that a fatal accident must have 
happened to her. 

3. Discussion  
 
3.1. Answer the questions concerning software development 
 

1) How much do you know about computer software?  
2) What is your favorite piece of software?  
3) Do you ever have software problems?  
4) Do you keep up to date with the latest software?  
5) Are you surprised that a lot of software is free?  
6) Have you ever bought pirated software? Would you?  
7) What do you think of speech recognition software? 
8) What more would you like your software to do? 
9) What questions would you like to ask Bill Gates or Steve Jobs about 

software? 
 

3.2. Possible topics for discussion 
 

1) Bill Gates said: "A solid working knowledge of productivity 
software and other IT tools has become a basic foundation for 
success in virtually any career." Do you agree with him? 

2) What is the greatest piece of software ever created?  
3) Why do you think Microsoft has stuck to software and never went 

into producing computers, like Apple? 
4)  Do you think software is good value for money?  
5) What do you think of people who design software? 

 
 
 



4. Additional reading 
 
4.1. Read and translate the following text  

 
Design and implementation 

 
The software development lifecycle is a framework that project 

managers use to describe the stages and tasks associated with designing 
software. The first steps in the design lifecycle are planning the effort and 
then analyzing the needs of the individuals who will use the software and 
creating detailed requirements. After the initial requirements analysis, the 
design phase aims to specify how to fulfill those user requirements. 

The next is step is implementation, where development work is 
completed, and then software testing happens. The maintenance phase 
involves any tasks required to keep the system running. 

The software design includes a description of the structure of the 
software that will be implemented, data models, interfaces between system 
components and potentially the algorithms the software engineer will use. 

The software design process transforms user requirements into a 
form that computer programmers can use to do the software coding and 
implementation. The software engineers develop the software design 
iteratively, adding detail and correcting the design as they develop it. 

The different types of software design include the following: 
Architectural design. This is the foundational design, which 

identifies the overall structure of the system, its main components and their 
relationships with one another using architectural design tools. 

High-level design. This is the second layer of design that focuses on 
how the system, along with all its components, can be implemented in 
forms of modules supported by a software stack. A high-level design 
describes the relationships between data flow and the various modules and 
functions of the system. 

Detailed design. This third layer of design focuses on all the 
implementation details necessary for the specified architecture.  



Fig. 3. The  main steps involved in developing software 

How to maintain software quality 

Software quality measures if the software meets both its functional 
and nonfunctional requirements. 

Functional requirements identify what the software should do. They 
include technical details, data manipulation and processing, calculations or 
any other specific function that specifies what an application aims to 
accomplish. 

Nonfunctional requirements -- also known as quality attributes -- 
determine how the system should work. Nonfunctional requirements 
include portability, disaster recovery, security, privacy and usability. 

Software testing detects and solves technical issues in the 
software source code and assesses the overall usability, performance, 
security and compatibility of the product to ensure it meets its 
requirements. 

The dimensions of software quality include the following 
characteristics: 



including individuals who require adaptive technologies such as voice 
recognition and screen magnifiers, can comfortably use the software. 

Compatibility. The suitability of the software for use in a variety of 
environments, such as with different OSes, devices and browsers. 

Efficiency. The ability of the software to perform well without 
wasting energy, resources, effort, time or money. 

Functionality. Software's ability to carry out its specified functions. 
Installability. The ability of the software to be installed in a specified 

environment. 
Localization. The various languages, time zones and other such 

features a software can function in. 
Maintainability. How easily the software can be modified to add and 

improve features, fix bugs, etc. 
Performance. How fast the software performs under a specific load. 
Portability. The ability of the software to be easily transferred from 

one location to another. 
Reliability. The software's ability to perform a required function 

under specific conditions for a defined period of time without any errors. 
Scalability. The measure of the software's ability to increase or 

decrease performance in response to changes in its processing demands. 
Security. The software's ability to protect against unauthorized 

access, invasion of privacy, theft, data loss, malicious software, etc. 
To maintain software quality once it is deployed, developers must 

constantly adapt it to meet new customer requirements and handle 
problems customers identify. This includes improving functionality, fixing 
bugs and adjusting software code to prevent issues. How long a product 
lasts on the market depends on developers' ability to keep up with these 
maintenance requirements. 

When it comes to performing maintenance, there are four types of 
changes developers can make, including: 

Corrective. Users often identify and report bugs that developers must 
fix, including coding errors and other problems that keep the software 
from meeting its requirements. 

Adaptive. Developers must regularly make changes to their software 
to ensure it is compatible with changing hardware and software 
environments, such as when a new version of the OS comes out. 

Accessibility. The degree to which a diverse group of people, 



Perfective. These are changes that improve system functionality, 
such as improving the user interface or adjusting software code to enhance 
performance. 

Preventive. These changes are done to keep software from failing 
and include tasks such as restructuring and optimizing code. 

 
Software licensing and patents 

A software license is a legally binding document that restricts the use 
and distribution of software. 

Typically, software licenses provide users with the right to one or 
more copies of the software without violating copyright. The license 
outlines the responsibilities of the parties that enter into the agreement and 
may place restrictions on how the software can be used. 

Software licensing terms and conditions generally include fair use of 
the software, the limitations of liability, warranties, disclaimers and 
protections if the software or its use infringes on the intellectual property 
rights of others. 

Licenses typically are for proprietary software, which remains the 
property of the organization, group or individual that created it; or for free 
software, where users can run, study, change and distribute the software. 
Open source is a type of software where the software is developed 
collaboratively, and the source code is freely available. With open source 
software licenses, users can run, copy, share and change the software 
similar to free software. 

Over the last two decades, software vendors have moved away from 
selling software licenses on a one-time basis to a software-as-a-
service subscription model. Software vendors host the software in the 
cloud and make it available to customers, who pay a subscription fee and 
access the software over the internet. 

Although copyright can prevent others from copying a developer's 
code, a copyright cannot stop them from developing the same software 
independently without copying. A patent, on the other hand, enables a 
developer to prevent another person from using the functional aspects of 
the software a developer claims in a patent, even if that other person 
developed the software independently. 

In general, the more technical software is, the more likely it can be 
patented. For example, a software product could be granted a patent if it 



creates a new kind of database structure or enhances the overall 
performance and function of a computer.  

[https://searchapparchitecture.techtarget.com/definition/software] 
4.2. Make a report on history of software. This brief timeline of the history 
of software will help you to prepare for your report 
 

The term software was not used until the late 1950s. During this 
time, although different types of programming software were being 
created, they were typically not commercially available. Consequently, 
users -- mostly scientists and large enterprises -- often had to write their 
own software. 
June 21, 1948. Tom Kilburn, a computer scientist, writes the world's first 
piece of software for the Manchester Baby computer at the University of 
Manchester in England. 
Early 1950s. General Motors creates the first OS, for the IBM 701 
Electronic Data Processing Machine. It is called General Motors Operating 
System, or GM OS. 
1958. Statistician John Tukey coins the word software in an article about 
computer programming. 
Late 1960s. Floppy disks are introduced and are used in the 1980s and 
1990s to distribute software. 
Nov. 3, 1971. AT&T releases the first edition of the Unix OS. 
1977. Apple releases the Apple II and consumer software takes off. 
1979. VisiCorp releases VisiCalc for the Apple II, the first spreadsheet 
software for personal computers. 
1981. Microsoft releases MS-DOS, the OS on which many of the early 
IBM computers ran. IBM begins selling software, and commercial 
software becomes available to the average consumer. 
1980s. Hard drives become standard on PCs, and manufacturers start 
bundling software in computers. 
1983. The free software movement is launched with Richard Stallman's 
GNU (GNU is not Unix) Linux project to create a Unix-like OS with 
source code that can be freely copied, modified and distributed. 
1984. Mac OS is released to run Apple's Macintosh line. 
Mid-1980s. Key software applications, including AutoDesk AutoCAD, 
Microsoft Word and Microsoft Excel, are released. 
1985. Microsoft Windows 1.0 is released. 
1989. CD-ROMs become standard and hold much more data than floppy 



disks. Large software programs can be distributed quickly, easily and 
relatively inexpensively. 
1991. The Linux kernel, the basis for the open source Linux OS, is 
released. 
1997. DVDs are introduced and able to hold more data than CDs, making 
it possible to put bundles of programs, such as the Microsoft Office Suite, 
onto one disk. 
1999. Salesforce.com uses cloud computing to pioneer software delivery 
over the internet. 
2000. The term software as a service (SaaS) comes into vogue. 
2007. IPhone is launched and mobile applications begin to take hold. 
2010 to the present. DVDs are becoming obsolete as users buy and 
download software from the internet and the cloud. Vendors move to 
subscription-based models and SaaS has become common. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



UNIT 3. Operating System 
------------------------------------------------------------------------------- 

 
Learning objectives 
 to understand what operating system is and how it works  
 to acquire basic knowledge about different  functions and 

characteristics of OS  and to use a chart to organize the  information 
 to understand the role of OS 

 
Key words and phrases. Give Russian equivalents and remember the 
meanings of the key words and phrases. 
 

Core software program; to run; a consistent environment; to interact; 
command-line interface; graphical user interface; to utilize; to 
coordinate; device drivers; files and folders; to rename; to monitor 
system health; to retrieve data; software compatibility; open source; 
to be owned by smb.; to charge money; incompatible; edition; 
random access memory. 

 
Before reading the text B watch the video from  
https://edu.gcfglobal.org/en/computerbasics/understanding-operating-
systems/1/ to get some information on the operating systems. Render it into 
Russian 
 
Read the following text and do the exercises given after it  
 

Operating System (OS) is one of the core software programs that 
runs on the hardware and makes it usable for the user to interact with the 
hardware so that they can send commands (input) and receive results 
(output). It provides a consistent environment for other software to execute 
commands. So we can say that the OS acts at the center through which the 
system hardware, other software, and the user communicate. The 
following figure shows the basic working of the operating system and how 
it utilizes different hardware or resources. 
 



 

Fig. 4. Operating system working as a core part 
 

Basic Functions of the Operating system 
The key five basic functions of any operating system are as following: 
 

1. Interface between the user and the hardware: An OS provides an 
interface between user and machine. This interface can be a graphical 
user interface (GUI) in which users click onscreen elements to 
interact with the OS or a command-line interface (CLI) in which 
users type commands at the command-line interface (CLI) to tell the 
OS to do things. 

 

 

Fig. 5. GUI vs CLI 
 
 
 



2. Coordinate hardware components: An OS enables coordination of
hardware components. Each hardware device speaks a different
language, but the operating system can talk to them through the
specific translational software called device drivers. Every hardware
component has different drivers for Operating systems. These drivers
make the communication successful between the other software and
the hardware.

Fig. 6. Device Drivers in between OS and Hardware devices 

3. Provide environment for software to function: An OS provides an
environment for software applications to function. An application
software is a specific software which is used to perform specific task.
In GUI operating systems such as Windows and macOS, applications
run within a consistent, graphical desktop environment.

4. Provide structure for data management: An OS displays
structure/directories for data management. We can view file and
folder listings and manipulate on those files and folders like (move,
copy, rename, delete, and many others).

5. Monitor system health and functionality: OS monitors the health
of our system’s hardware, giving us an idea of how well (or not) it’s 
performing. We can see how busy our CPU is, or how quickly our 
hard drives retrieve data, or how much data our network card is 
sending etc. and it also monitors system activity for malware. 



 

Fig. 7. Performance Monitor in windows 
 

Operating System Characteristics 
 

The Operating systems are different according to the three primary 
characteristics which are licensing, software compatibility, and complexity. 

Licensing 
There are basically three kinds of Operating systems. One is Open 

Source OS, another is Free OS and the third is Commercial OS. 
Linux is an open source operating system which means that anyone 

can download and modify it for example Ubuntu etc. 
A free OS doesn’t have to be open source. They are free to download 

and use but cannot modify them. For example, Google owns Chrome OS 
and makes it free to use. 

Commercial operating systems are privately owned by companies 
that charge money for them. Examples include Microsoft Windows and 
Apple macOS. These require to pay for the right (or license) to use their 
Operating systems. 

Software Compatibility 
The developers make the software which may be compatible or 
incompatible in different versions within the same operating system’s type 



but they can’t be compatible with the other OS types. Every OS  type has 
its own software compatibility. 
Complexity 
Operating systems come in basically two editions one is 32-bit and other is 
64-bit editions. The 64-bit edition of an operating system best utilizes 
random access memory (RAM). A computer with a 64-bit CPU can run 
either a 32-bit or a 64-bit OS, but a computer with a 32-bit CPU can run 
only a 32-bit OS. 
 

 

Fig. 8. 32-bit vs 64-bit Windows OS 
 

[https://medium.com/computing-technology-with-it-fundamentals/operating-system-
its-functions-and-characteristics-c0946e4215c6] 

 
 

1. Text-based Assignments 
 

1.1. Give English equivalents of the following words and word 
combinations: 

 
Отправлять инструкции; обеспечивать среду; кликать на элементы на 
экране; программное обеспечение для перевода; выполнять 
определенную задачу; управление данными; удалять файлы; 
перемещать; жесткий диск; печатать команды; вредоносное ПО; 
главные характеристики; сложность; бесплатная операционная 
система; право пользования; совместимость; использовать 
наилучшим образом. 

 
 



1.2. Match the following words from the text with their meanings 
 
1. Device driver a) the smallest piece of information used by a 

computer. 
2. Bit b) system software that manages hardware, software, 

and resources, and provides services for other 
software. It will also usually provide an interface for 
the end user. 

3. Command 
line interface 

c) any software designed to do something that the user 
would  not wish  it to do, hasn't asked it to 
do, and often has no knowledge of until it's too late. 

4. GUI d) the level in difficulty in solving mathematically 
posed problems as measured by the time, number of 
steps or arithmetic operations, or memory 
space  required. 

5. Malware e) a type of interface that allows the user to interact 
with a computer system. It usually involves clicking 
on icons or selecting options from a menu. 

6. Complexity f) a means of communication between 
a program and its user, based solely on 
textual input and output. Commands are input with 
the help of a keyboard or similar device and are 
interpreted and executed by the program. Results are 
output as text or graphics to the terminal. 

7. Operating 
system 

g) smth. that often forms part of the lowest level of 
the operating system kernel, with which they are 
linked when the kernel is built. Some more recent 
systems have loadable device drivers 
which can be installed from files. 

 
1.3. Answer the following questions on the text 
 

1) What is the relationship between operating systems and computer 
hardware? 

2) What is the main purpose of an operating system? 
3) How many basic functions does an operating system have? 
4) What devices make the communication successful between the other 

software and the hardware? 



5) What does an OS display? 
6) Is there any difference between Open Source OS and Free OS?  
7) What does device driver software do? 

 
1.4. Read the text again and decide if the following statements are true or 

false.  
 

1) An OS provides a consistent environment for other software to 
execute commands. 

2) There are basically three kinds of Operating systems. One is Open 
Source OS, another is Free OS and the third is  Network Operating 
System. 

3) The 64-bit edition of an operating system best utilizes read only 
memory (ROM). 

4) Every OS  type has its own software compatibility. 
5) In GUI operating systems such as Windows and macOS, applications  

cannot run within a graphical desktop environment. 
6) Every hardware component has different drivers for Operating 

systems. 
7) Linux is one of the examples of commercial   operating systems.  
8) OS monitors the health of our system’s hardware. 

 
2. Focus on Grammar 

 
2.1. Define tense and voice of the  predicates in the following sentences 
and translate them into Russian 
 

1) Actually, the term "computer" is fast being replaced by the more 
appropriate term "electronic data processing machine".  

2) Recently certain binary machines have been announced which will 
be capable of utilizing magnetic disc file memories.  

3) This kind of computers will be equipped with a disc file of extremely 
high capacity and access speed.  

4) In the past few years several designs have been advanced and some 
have actually been built.  

5) Business variables have been and are being expressed as 
mathematical functions and are being statistically analyzed.  

6) Eight distinguished speakers have been asked to consider the 



potentialities and limitations of the computer in activities related to 
management.  

7) The problem of designing a non-mechanical printer has already been
studied in the central research laboratory.

8) The computer is given position, data and velocity vectors of the
satellite for a given time.

2.2. Insert either, neither or both. Translate the sentences into Russian 

1) …operating systems (Linux and UBUNTU) are very good. 
2) I don’t want to install … Windows nor macOS.
3) They … laughed and one of the programmers looked down at his

desk.
4) We were … in the office, but … of us spoke for some time.
5) …you apologize, or I’ll never speak to you again. 
6) Can … of you  prepare a presentation?
7) … students passed the test. 
8) Whatever … of  you is thinking, you’re wrong.
9) …he … I went to speak to the manager of our project. 
10) I enjoy …  the report  and the presentation.



3. Discussion

3.1. Discuss the following questions with your groupmates 

1) How would using a computer be different if it had no operating
system?  How would programming be different?

2) How would using a computer be different if it had no operating
system?  How would programming be different?

3) List several mental tasks that people do better than computers.  List
several mental tasks that computers do better than people.  Can you
find any general characteristics that distinguish the items on the two
lists?

4) Some popular Operating Systems include Linux Operating System,
Windows Operating System, VMS, OS/400, AIX, z/OS, etc. What
OS  does your home  computer have? Are you satisfied with it? Have
you had any troubles?

3.2. According to the information in the text complete the graph and speak 
about functions and characteristics of OSs 

Operating System 

Functions Characteristics 



4. Additional reading 
 
4.1. Read and translate the following text about some types of Operating 
Systems 

 
Batch operating system 

 
The users of a batch operating system do not interact with the 

computer directly. Each user prepares his job on an off-line device like 
punch cards and submits it to the computer operator. To speed up 
processing, jobs with similar needs are batched together and run as a 
group. The programmers leave their programs with the operator and the 
operator then sorts the programs with similar requirements into batches. 

 
Time-sharing operating systems 

Time-sharing is a technique which enables many people, located at 
various terminals, to use a particular computer system at the same time. 
Time-sharing or multitasking is a logical extension of multiprogramming. 
Processor's time which is shared among multiple users simultaneously is 
termed as time-sharing. 

The main difference between Multiprogrammed Batch Systems and 
Time-Sharing Systems is that in case of Multiprogrammed batch systems, 
the objective is to maximize processor use, whereas in Time-Sharing 
Systems, the objective is to minimize response time. 

Multiple jobs are executed by the CPU by switching between them, 
but the switches occur so frequently. Thus, the user can receive an 
immediate response. For example, in a transaction processing, the 
processor executes each user program in a short burst or quantum of 
computation. That is, if n users are present, then each user can get a time 
quantum. When the user submits the command, the response time is in few 
seconds at most. 

The operating system uses CPU scheduling and multiprogramming to 
provide each user with a small portion of a time. Computer systems that 
were designed primarily as batch systems have been modified to time-
sharing systems. 

 
 
 



Distributed operating System 
Distributed systems use multiple central processors to serve multiple 

real-time applications and multiple users. Data processing jobs are 
distributed among the processors accordingly. 

The processors communicate with one another through various 
communication lines (such as high-speed buses or telephone lines). These 
are referred as loosely coupled systems or distributed systems. Processors 
in a distributed system may vary in size and function. These processors are 
referred as sites, nodes, computers, and so on. 

 
Network operating System 

A Network Operating System runs on a server and provides the 
server the capability to manage data, users, groups, security, applications, 
and other networking functions. The primary purpose of the network 
operating system is to allow shared file and printer access among multiple 
computers in a network, typically a local area network (LAN), a private 
network or to other networks. 

Examples of network operating systems include Microsoft Windows 
Server 2003, Microsoft Windows Server 2008, UNIX, Linux, Mac OS X, 
Novell NetWare, and BSD. 

 
Real Time operating System 

A real-time system is defined as a data processing system in which 
the time interval required to process and respond to inputs is so small that 
it controls the environment. The time taken by the system to respond to an 
input and display of required updated information is termed as 
the response time. So in this method, the response time is very less as 
compared to online processing. 

Real-time systems are used when there are rigid time requirements 
on the operation of a processor or the flow of data and real-time systems 
can be used as a control device in a dedicated application. A real-time 
operating system must have well-defined, fixed time constraints, otherwise 
the system will fail. For example, Scientific experiments, medical imaging 
systems, industrial control systems, weapon systems, robots, air traffic 
control systems, etc. 

There are two types of real-time operating systems. 
Hard real-time systems guarantee that critical tasks complete on 

time. In hard real-time systems, secondary storage is limited or missing 



and the data is stored in ROM. In these systems, virtual memory is almost 
never found. 

Soft real-time systems are less restrictive. A critical real-time task 
gets priority over other tasks and retains the priority until it completes. 
Soft real-time systems have limited utility than hard real-time systems. For 
example, multimedia, virtual reality, Advanced Scientific Projects like 
undersea exploration and planetary rovers, etc. 

[https://www.tutorialspoint.com/operating_system/os_types.htm] 
 
 

4.2. Fill in the table with information about advantages and disadvantages 
of OS types. You  can use some Internet resources if necessary 
 

Types Advantages Disadvantages 
Batch operating system … Lack of interaction 

between the user and 
the job. 
… 

Distributed operating 
System 

Better service to the 
customers. 
… 

… 

Time-sharing operating 
systems 

Provides the advantage 
of quick response. 
… 

Problem of reliability. 

… 

Network operating 
System 
 

Security is server 
managed. 
… 

High cost of buying 
and running a server. 
… 

 
4.3. Answer the following questions and try to explain your answer 
 

Test yourself 
 
Question 1. Which one of the following is not software? 
(A) MS-Word 
(B) MS-Excel 
(C) Keyboard 
(D) Microsoft windows 
Solution: ___________________________________________________ 
 



Question 2. Which one of the following is acts as an interface between 
the user and the computer hardware? 
(A) Monitor 
(B) Operating system  
(C) User thread 
(D) Application program 
Solution: ___________________________________________________ 
 

Question 3. The only language that the computer can process or execute 
is called ___________  ? 
(A) Machine language 
(B) Normal language 
(C) Computer language 
(D) High-level language 
Solution:____________________________________________________ 
 
Question 4. Which of the following software is used to control the 
operations of a computer? 
(A) Application Software 
(B) System Software 
(C) Utility Software 
(D) Language Processor 
Solution: ___________________________________________________ 
 
Question 5. Which one of the following software is designed to solve a 
specific problem or to do a specific task? 
(A) Language Processor 
(B) Application Software 
(C) System Software 
(D) Utility Software 
Solution: ___________________________________________________ 
 
Question 6. Which one of the following is not an example of an operating 
system? 
(A) Linux 
(B) Apple macOS 
(C) Microsoft Windows, 
(D) None of the above 
Solution: ___________________________________________________ 



Question 7. Which of the following is a language processor? 
(A) C++ programming language 
(B) Compiler 
(C) Linux 
(D) All of the above  
Solution: ___________________________________________________ 

 [https://www.geeksforgeeks.org/software-and-its-types/] 

 
4.4. Translate the following sentences 
 

1. Операционная система является основным программным 
обеспечением, которое управляет всем аппаратным и другим 
программным обеспечением на компьютере. 

2. Операционная система, также известная как «ОС», 
взаимодействует с аппаратным обеспечением компьютера и 
предоставляет службы, которые могут использовать 
приложения.  

3. Операционные системы также включают в себя множество 
программных продуктов, таких как общие системные службы, 
библиотеки и интерфейсы прикладного программирования 
(API), которые разработчики могут использовать для написания 
программ, работающих в операционной системе.  

4. Большинство программных приложений написано для 
операционных систем, что позволяет операционной системе 
делать много работы. 

5. Например, при запуске Minecraft Вы запускаете его в 
операционной системе.  

6. Minecraft не должен точно знать, как работает каждый 
отдельный аппаратный компонент.  

7. Minecraft использует различные функции операционной 
системы, а операционная система переводит их в 
низкоуровневые аппаратные инструкции. 

8. По количеству одновременно работающих программ 
операционные системы делят на однозадачные и 
многозадачные. 

 
 
 



Key answers to the test 4.3. 

1. The correct option is C, i.e., Keyboard. Because a keyboard is not 
software, as it is a hardware device (input device). 
2. The correct option is B, i.e., Operating System. Because an operating  
system provides an interface to the user, which helps the user to interact 
with the computer system.  
3. The correct option is A, i.e., Machine language. The only language that 
the computer can process or execute is called machine language as this  
language is capable of telling the computer explicitly what to do. 
4. The correct option is B, i.e., System Software. There are two types of 
software: system software and application software. System Software is 
used to control the operations and also controls a computer’s internal 
functioning and hardware devices. 
5. The correct option is B, i.e., Application Software. Because a software 
that performs special functions or provides function which are much more 
than basic operation of the computer are application software. 
6. The correct option is D, i.e., None of the above. Because Linux, Apple 
macOS, Microsoft Windows are the examples of operating systems. 
7. The correct option is B, i.e., Compiler. Because a language processor is 
designed or used to convert program code to machine code. So, a compiler 
is a language processor and used in C/C++ programming language.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



UNIT 4. What is Computer Programming?  
Coding vs. Programming 

------------------------------------------------------------------------------------------ 
 
 Learning objectives 
 to acquire basic knowledge about computer programming 
 to understand the main purpose of programming  
 to understand the difference between coding and programming 

 

Key words and phrases. Give Russian equivalents and remember the 
meanings of the key words and phrases. 
 

Programming language; to accomplish; intelligible; a sequence of 
instructions; expertise; source code maintenance; machine code; to 
process; reverse engineering; to  assign; syntax; tools; outcome; 
proficient; application domain; central processing unit; coding basics; 
a piece of code; to have responsibility 

 
Before reading the text  watch the video from 
https://www.youtube.com/watch?v=C9FlbhRVYdc&ab_channel=LiveLess
ons to get some information on the topic 
 

1. Read the following text and do the exercises given after it 
  

Programming is the process of taking an algorithm and encoding it 
into a notation, a programming language, so that it can be executed by a 
computer. Although many programming languages and many different 
types of computers exist, the important first step is the need to have the 
solution. Without an algorithm there can be no program. 

 

 



Computer science is not the study of programming. Programming, 
however, is an important part of what a computer scientist does. 
Programming is often the way that we create a representation for our 
solutions. Therefore, this language representation and the process of 
creating it becomes a fundamental part of the discipline. 

 
What is computer programming? 

 Computer programming is the process of designing and building 
an executable computer program to accomplish a 
specific computing result or to perform a specific task. 
 
Programming involves tasks such as: analysis, 

generating algorithms, profiling algorithms' accuracy and resource 
consumption, and the implementation of algorithms in a 
chosen programming language (commonly referred to as coding).  

The source code of a program is written in one or more languages 
that are intelligible to programmers, rather than machine code, which is 
directly executed by the central processing unit. The purpose of 
programming is to find a sequence of instructions that will automate the 
performance of a task (which can be as complex as an operating system) 
on a computer, often for solving a given problem. Proficient programming 
thus often requires expertise in several different subjects, including 
knowledge of the application domain, specialized algorithms, and 
formal logic. 

Tasks accompanying and related to programming 
include: testing, debugging, source code maintenance, implementation 
of build systems, and management of derived artifacts, such as 
the machine code of computer programs. These might be considered part 
of the programming process, but often the term software development is 
used for this larger process with the term programming, implementation, 
or coding reserved for the actual writing of code. Software 
engineering combines engineering techniques with software development 
practices. Reverse engineering is a related process used by designers, 
analysts and programmers to understand and re-create/re-implement.  

 
What is coding? 
 Code is the language used by computers to understand and process 

our requests. 



Coding is vital to the way our modern world operates, yet many 
people don’t realize it. If you’re on any webpage, just right click your 
mouse pad and click on ‘View Page Source,’ scroll through, and see if you 
can understand anything. There’s a lot of information about the webpage 
there, which you probably don’t know, but this is your first experience 
with coding basics (HTML, CSS, etc.). 

Techopedia defines coding as “assigning a code or classification to 
something.” This is essentially the way that humans communicate with 
machines. And, it all started in the 1950s, when the invention and 
development of coding languages was in full swing. Many of the coding 
languages created then are still used today, like FORTRAN, LISP and 
COBOL. 

Key differences between coding and programming 

How do coding and programming fit into the software development 
industries? There are a few key differences to know between the two: 

Skills needed: Coders don’t necessarily have to be skilled in 
programming, but programmers should be knowledgeable with the bigger 
picture and should understand coding. Programmers not only have to write 
code, they also have to understand algorithms to ensure that the code they 
write is optimized in the best possible way. 

Difficulty: If you want to be a coder, you need to learn all about 
programming language. As a programmer, you’ll need to know this as well 
as how various algorithms work. 

Work scope: When putting together software, as a coder, you’re 
responsible for putting together a specific piece of code for part of the 
program. As a programmer, you have more responsibility as you need to 
look at the bigger picture and ensure that the software runs smoothly on all 
fronts. 

The information in this chart from Hackr.io provides a great 
summary of the key differences between coding and programming. 

 

Key points Coding Programming 

Skills It is a process to convert a set 
of instructions into a language 
that the computer can 
understand  

Has a wider scope so apart from 
coding it also involves defining 
requirements, writing pseudo code, 
testing and building executables 



Scope  As a coder, you need to know 
the syntax of the programming 
language 

As a programmer, you need high-
level thinking and analytical skills 
apart from coding skills 

Tools Eclipse, Bootstrap, Delphi, 
ATOM and many more  

To add on to the coding tools other 
tools such as Git and Github, 
Database Tools, Analytical tools 
such as Apache Spark, Presentation 
tools, Cloud tools are also essential. 

Outcome  A working piece of code  The whole application, a software 
product or a website 

 

Support  Extensive developer 
community support is 
available 

Extensive community support is 
available 

[https://www.lighthouselabs.ca/en/blog/coding-vs-programming] 

    

1. Text-based Assignments 

 

1.1. Give English equivalents of the following words and word 
combinations: 

Кодирование алгоритма в нотацию; выполняться компьютером; 
языковое представление; исходный код программы; доступный для 
понимания; опытный; обслуживание исходного кода; реверсивное 
(обратное) проектирование; последовательность команд; 
просматривать путем прокрутки; используются до сих пор; 
изобретение; отвечать за что-л.; создание исполняемых кодов; 
помимо навыков кодирования; поддержка сообщества. 

  

1.2. Using suffixes -al, -able, -ory, ive, etc., give adjectives which are 
related to the following verbs. Use them in your own sentences 

 
to change  
to program  
to create 
to regulate  

to value  
to structure  
to expense 
to control 



1.3. Match the terms with their definitions 
 

1. API a) a set of rules for grammar and spelling. In 
other words, it means using character 
structures that a computer can interpret. 

2. Software b) a collection of binary digits or bits that the 
computer reads and interprets. 

3. Syntax c) a collection of instructions that enable the 
user to interact with a computer, its 
hardware, or perform tasks.  

4. Machine code d)  a process of analyzing a computer 
program and removing its logical or 
syntactical errors. 

5. Implement e) achieve or complete successfully 
6. Accomplish f) put into effect 
7. Debugging g) a document with information required by 

an individual or organization to apply for a 
position, financial grant, or another limited 
resource. 

8. Application h) a set of routines, protocols, and tools for 
building software applications. APIs allow 
programmers easier entry into another 
company's program or service. 

 

1.4. Answer the following questions: 

 
1) What are the key differences  between coding and programming? 
2) What does proficient programming require? 
3) What are the tasks accompanying and related to programming? 
4) Do people realize the importance of programming in our modern 

world? Why? 
5) How is  the code program written? 
6) What do you mean by extensive community support? 

 
 
 



1.5. Complete  one of the profiles for  the following positions. You can use 
some phrases, for example: 

 
I graduated in … My first job was in …  
It involved monitoring and … 
I am responsible for … operations. The job involves management too. 
My background is… I was attracted by… I have always been fascinated by 
the… 
Working abroad is a big priority for me too and that’s one of the main 
reasons I chose … 
I’m moving job this year to… for … years. I’ll be based in an office in … 
Another great thing about my job is that…  
Professionally, when you’re a woman you have to prove you’re as good as 
a man.  
…  because so many  aspects are technology dependent. 
After my training period in… over, I plan to … 
Another …years, I returned to Paris and spent … years working on 
designing…. 
 
Computer and 
IS Manager 

System 
Administrator 

Computer 
programmer  

Database 
administrator 

    
 

2. Focus on Grammar 
 
2.1. Complete the sentences with the correct tense form of the verbs in 

brackets 
 

a. Active voice 
1. They (to test) the program and (to detect) the bugs by 3 p.m. tomorrow. 
2. This company (to play) an important role in multimedia development 
since its very inception. 3. She never (to be able) to fix the problem.  
4. They (not to install) the updates yet. 5. You ever (to watch) TV on the 
Internet? 6. He (to study) some high-level computer languages by next 
year. 
b. Passive Voice 
1. After the program (to be improved) it (to be published) as an updated 
version. 2. All the articles on programming languages (to be translated) by 



next Friday. 3. Five networks for large companies (to be set up) recently. 
4. A flowchart (to be designed) by 3 p.m. yesterday. 5. The program 
already (to be translated) into machine language. 
 
2.2. Transform the following sentences with the verbs in the  Active 

Voice into Passive 
 

1) Once you've made a program, you can save it and share it with your 
friends and family.  

2) Finally, after you do the calculation, you want to display the result on 
the screen.  

3) Computer programmers use specialized languages to communicate 
with computers, applications and other systems to get computers and 
computer networks to perform a set of specific tasks.  

4) George noted that students build software in online labs. 
5) Programmers design Assembly language to be easily translated into 

machine language. 
6) Dutch programmer Guido van Rossum developed the open-source 

language Python in 1991. 
7) Another approach is to use a language designed for Web scripts  for 

the browser execute it. 
 
2.3. Put in the to-infinitive form. (Some may be continuous, perfect or in 

Passive). Comment on the form of the infinitive.  
Use these verbs: take, talk, interfere, design, do, weigh, speak.  

 
1) It is very easy ______ about functionalities, because they are 

tangible.  
2) It will enable us ______ the reports on our own. 
3) He seemed _______ something in his mind. 
4) There’s nothing _____ with this new program. 
5) You know how I hate ______in other people’s business. 
6) She was too timid ______. 
7) He seemed _____his defeat quietly. 

 
 
 
 



3. Discussion 
 

3.1. Discuss the following questions 
 

1) What does the phrase “a good programmer” mean to you? 
2) What abilities/skills should a good programmer have? 
3) Api or library? Which is more important? 

https://www.youtube.com/watch?v=OVvTv9Hy91Q&ab_channel=Si
mplyExplained 

4) Give some examples of the main programming areas. 
5) Which programming languages are important now? 

 
3.2. Discuss with your partner some amazing  Great Programming Quotes 
about software development (by Jeremy Morgan #programming) 

 "Programming isn't about what you know; it's about what you can 
figure out.” - Chris Pine 

Especially important for beginners. At first, we're so anxious about 
knowing everything, especially language syntax. Problem-solving is the 
skill we end up using most. 
 "The only way to learn a new programming language is by writing 

programs in it." - Dennis Ritchie 
Programmers are mostly "learn by doing" types. No amount of academic 
study or watching other people code can compare to breaking open an 
editor and start making mistakes. 
 "Sometimes it's better to leave something alone, to pause, and that's 

very true of programming." - Joyce Wheeler 
When managing developers I would always encourage getting up and 
walking away from the computer when you have a problem. Some of your 
best solutions will come to you when you're not at the machine. 
 "In some ways, programming is like painting. You start with a blank 

canvas and certain basic raw materials. You use a combination of 
science, art, and craft to determine what to do with them." - Andrew 
Hunt 

Outsiders question whether programming is art. Programmers don't. 
 "Testing leads to failure, and failure leads to understanding." - Burt 

Rutan 
Some developers hate testing. However, shifting your attitude and 
embracing it makes you a better developer. 



 "The best error message is the one that never shows up." - Thomas 
Fuchs 

Remember this the next time you decide to focus on some great error 
reporting. 
 “The most damaging phrase in the language is.. it's always been done 

this way” - Grace Hopper 
To be a programmer long term, you have to love change. You can't just 
tolerate it, you have to love it. 

 
4. Additional reading 

 
4.1. Read  the text to yourself  and answer the questions below to see how 
well you understand the topic 

 
Quantum computing has been seeing increased attention over the last 

decade, since these computers, which function according to the principles 
of quantum physics, have enormous potential. Today, most researchers 
believe that these computers will one day be able to solve certain problems 
faster than classical computers, since to perform their calculations they use 
entangled quantum states in which various bits of information overlap at a 
certain point in time. This means that in the future, quantum computers 
will be able to efficiently solve problems which classical computers cannot 
solve within a reasonable timeframe. 

This quantum supremacy has still to be proven conclusively. 
However, some significant technical advances have been achieved 
recently. In late summer 2019, a quantum computer succeeded in solving a 
problem -- albeit a very specific one -- more quickly than the fastest 
classical computer. 

For certain "quantum algorithms," i.e. computational strategies, it is 
also known that they are faster than classical algorithms, which do not 
exploit the potential of quantum computers. To date, however, these 
algorithms still cannot be calculated on existing quantum hardware 
because quantum computers are currently still too error-prone. 

Utilizing the potential of quantum computation not only requires the 
latest technology, but also a quantum programming language to describe 
quantum algorithms. In principle, an algorithm is a "recipe" for solving a 
problem; a programming language describes the algorithm so that a 
computer can perform the necessary calculations. 



Today, quantum programming languages are tied closely to specific 
hardware; in other words, they describe precisely the behaviour of the 
underlying circuits. For programmers, these "hardware description 
languages" are cumbersome and error-prone, since the individual 
programming instructions must be extremely detailed and thus explicitly 
describe the minutiae needed to implement quantum algorithms. 

Computer scientists refer to computer languages that abstract from 
the technical details of the specific type of computer as high-level 
programming languages. Silq is the very first high-level programming 
language for quantum computers. High-level programming languages are 
more expressive, meaning that they can describe even complex tasks and 
algorithms with less code. This makes them more comprehensible and 
easier to use for programmers. They can also be used with different 
computer architectures.  

[Abridged from  
https://www.sciencedaily.com/releases/2020/06/200615115820.htm ] 

 
1) Utilizing the potential of quantum computation requires _________. 
a) the latest technology 
b) a quantum programming language and  the latest technology 
c) a quantum programming language  

 
2) High-level programming languages can describe _______. 
a) complex tasks and algorithms with less code. 
b) complex tasks and algorithms with much code 
c) complex algorithms  

 
3) Today, ________are tied closely to specific hardware. 

a) software programs 
b) quantum programming languages 
c) high-level languages 

 
4) For programmers, these "hardware description languages" are 

_______.  
a) easily managed and error-prone 
b) not easily managed and error 
c) cumbersome and error-prone 

 
 



5) Computer scientists refer to computer languages that abstract from 
the technical details of the specific type of computer as __________. 
a) high-level programming languages 
b) low-level programming languages 
c) high-level and low-level programming languages 

 

4.2. Read and translate the following text  
 

How the brain is programmed for computer programming? 

Countries around the world are seeing a surge in the number of 
computer science students. Enrolment in related university programs in the 
U.S. and Canada tripled between 2006-2016 and Europe too has seen 
rising numbers. At the same time, the age to start coding is becoming 
younger and younger because governments in many different countries are 
pushing K-12 computer science education. Despite the increasing 
popularity of computer programming, little is known about how our brains 
adapt to this relatively new activity. A new study by researchers in Japan 
has examined the brain activity of thirty programmers of diverse levels of 
expertise, finding that seven regions of the frontal, parietal and temporal 
cortices in expert programmer's brain are fine-tuned for programming. The 
finding suggests that higher programming skills are built upon fine-tuned 
brain activities on a network of multiple distributed brain regions. 

"Many studies have reported differences between expert and novice 
programmers in behavioural performance, knowledge structure and 
selective attention. What we don't know is where in the brain these 
differences emerge," says Takatomi Kubo, an associate professor at Nara 
Institute of Science and Technology, Japan, and one of the lead authors of 
the study. 

To answer this question, the researchers observed groups of novices, 
experienced, and expert programmers. The programmers were shown 72 
different code snippets while under the observation of functional MRI 
(fMRI) and asked to place each snippet into one of four functional 
categories. As expected, programmers with higher skills were better at 
correctly categorizing the snippets. A subsequent searchlight analysis 
revealed that the amount of information in seven brain regions 
strengthened with the skill level of the programmer: the bilateral inferior 
frontal gyrus pars triangularis (IFG Tri), left inferior parietal lobule (IPL), 
left supramarginal gyrus (SMG), left middle and inferior temporal gyri 
(MTG/IT), and right middle frontal gyrus (MFG). 



"Identifying these characteristics in expert programmers' brains 
offers a good starting point for understanding the cognitive mechanisms 
behind programming expertise. Our findings illuminate the potential set of 
cognitive functions constituting programming expertise," Kubo says. 

More specifically, the left IFG Tri and MTG are known to be 
associated with natural language processing and, in particular, semantic 
knowledge retrieval in a goal-oriented way. The left IPL and SMG are 
associated with episodic memory retrieval. The right MFG and IFG Tri are 
functionally related to stimulus-driven attention control. 

"Programming is a relatively new activity in human history and the 
mechanism is largely unknown. Connecting the activity to other well-
known human cognitive functions will improve our understanding of 
programming expertise. If we get more comprehensive theory about 
programming expertise, it will lead to better methods for learning and 
teaching computer programming," Kubo says. 

 
4.3. Write a short summary of the text (Task 4.2) in English 

4.4. Translate the following sentences 

1. Техники-программисты работают в вычислительных центрах, 
IT-компаниях, банках, образовательных учреждениях. Они 
занимаются разработкой программного обеспечения, 
устранением неполадок в работе вычислительной техники, 
наладкой оборудования, обучением пользователей.  

2. Программирование основывается на использовании языков 
программирования, на которых записываются исходные тексты 
программ.  

3. После того, как было принято решение о возможности 
программной реализации поставленной задачи, необходимо 
построить алгоритм её решения.  

4. Выбирая  профессию программиста, следует быть готовым к 
тому, что учеба не кончится ни после университета, ни после 
получения высокой должности. Эта специфика, в первую 
очередь, появляется из-за того, что сфера информационных 
технологий достаточно молода и постоянно развивается.  

5. Программирование – это объяснение машине что, в каком виде 
и как нужно получить пользователю. То есть это своеобразное 
искусство перевода пожеланий человека на язык машины.  



----------
 
 Learnin
 to 

en
 to 

lan
 to 

pro
 

Key wo
meaning
 

Co
seq
dev
ma
imp
tre

 
Before 
https://w
emy    t
about th
 
Read the
 

process 
consumi

-----------

ng object
acquire 

ngineering
understa

nguages 
unders

ogrammi

ords and
gs of the 

ollection 
quences; 
vices; sy
arkup lan
perative 
ated as; d

read
www.you
to get so

he topic? 

e followi

data. O
ing witho

UNIT 
-----------

tives 
basic k

g tool 
and the m

stand th
ing 

d phrases
key word

of instru
assemb

yntax; cli
nguage; 
form; d

dominan

ding t
tube.com

ome infor

ing text a

Our work
out progr

5. Prog
-----------

knowledg

main  dif

he role 

s. Give 
ds and ph

uctions; lo
bly lang
ient-serv
to comp

declarativ
nt implem

the t
m/watch?
rmation 

and do th

k would
ramming

grammi
-----------

ge about

fference b

of ass

Russian
hrases. 

ow-level
guage; s
ver applic
pile; to 
ve form;

mentation

text w
?v=EGQh

on the t

e exercis

 
Pro

engineer
a comp
language
collectio
compute
and the 

d have b
g.  

ing Lan
-----------

t program

between 

sembly 

 equival

l languag
sophistic
cation; s
interpre

; to spli
n. 

watch 
h5SZctaE
opic. Wh

ses given

ogrammi
ring tool.
puter pr
e. Com
ons of 
er how t

compute
been ver

guages 
-----------

mming l

high-lev

language

lents and

ges; high-
ated me
hell scri

et; statem
it into; e

the 
E&ab_ch
hat do yo

n after it 

ing is 
. It is a p
rogram 
mputer 
instructio
to interac
er hardw
ry dema

-----------

language

vel and lo

e in c

d remem

-level lan
eans; pe
ipting lan
ments; e
extension

video 
hannel=C
ou alrea

an im
process o
using c
program

ons that
ct with 

ware and
anding a

----------

es as an

ow-level

computer

mber the

nguages;
eripheral
nguages;
xpertise;
n; to be

from
Codecad
dy know

mportant
f writing

computer
ms are
t tell a
the user

d how to
and time

 

n 

l 

r 

e 

; 
l 
; 
; 
e 

m 

d
w 

t 
g 
r 
e 
a 
r 
o 
e 



Programming languages can be classified as either low-level 
languages or high-level languages. Low-level programming languages or 
machine languages are the most basic type of programming languages and 
can be understood directly by a computer. It is extremely tedious to 
program directly in machine language because instructions are written as 
sequences of 1s and 0s called bits. Assembly languages are used to make 
machine language programs easier to write. For example, assembly 
languages use abbreviations such as ADD, SUB, MPY to represent 
instructions. The program is then translated into machine language by 
software called an assembler.  

Assembly language is designed to be easily translated into machine 
language. Although blocks of data may be referred to by name instead of 
by their machine addresses, assembly language does not provide more 
sophisticated means of organizing complex information. Like machine 
language, assembly language requires detailed knowledge of 
internal computer architecture. It is useful when such details are important, 
as in programming a computer to interact with peripheral devices (printers, 
scanners, storage devices, and so forth). 

High-level languages are relatively sophisticated sets of statements 
utilizing words and syntax from human language and therefore easier to 
read, write, and maintain. Examples of high-level languages are Pascal 
(widely used as a beginner or as a teaching language), C (used to write 
system software, graphics and commercial programs), C++ (primarily 
utilized with system / application software, drivers, client-server 
applications), Cobol (popular for business applications), Fortran (used for 
scientific and mathematical applications), Java (designed to run on the 
Web), Visual Basic (used to create Windows applications) and shell 
scripting languages such as those found in the UNIX, Linux and Mac OS 
X environment. The languages used to create Web documents are called 
markup languages, they use instructions (markups) to format and link text 
files, for example, HTML (Hypertext Markup Language). 

Regardless of what language you use you need to translate it into 
machine language so that a computer can understand and process it. There 
are two ways to do this: to compile the program and interpret the program. 
In a compiled language, the programmer writes more general instructions 
and a compiler (a special piece of software) automatically translates these 
high level instructions into machine language. The machine language is 
then executed by the computer. A large portion of software in use today is 



programmed in this way. In an interpreted programming language, the 
statements that the programmer writes are interpreted as the program is 
running. This means they are translated into machine language on the fly 
and then are executed as the program is running. 

People communicate instructions to the computer in programming 
languages and the choice of the language depends on the type of computer,  
the sort of program, the expertise of the programmer, etc. [10]. 

Thousands of different programming languages have been created, 
and more are being created every year. Many programming languages are 
written in an imperative form (i.e., as a sequence of operations to perform) 
while other languages use the declarative form (i.e. the desired result is 
specified, not how to achieve it). 

The description of a programming language is usually split into the 
two components of syntax (form) and semantics (meaning). Some 
languages are defined by a specification document (for example, the C 
programming language is specified by an ISO Standard) while other 
languages (such as Perl) have a dominant implementation that is treated as 
a reference. Some languages have both, with the basic language defined by 
a standard and extensions taken from the dominant implementation being 
common. 

Programming language theory is a subfield of computer science that 
deals with the design, implementation, analysis, characterization, and 
classification of programming languages. 

[https://en.wikipedia.org/wiki/Programming_language] 

1. Text-based Assignments

1.1. Give English equivalents of the following words and word 
combinations: 

Взаимодействие с пользователем; непосредственно; аббревиатура; 
называемых битами; перевести на машинный язык; сложная 
информация; внутренняя архитектура компьютера; выражения; в 
первую очередь; язык разметки гипертекстов; компилируемый язык; 
интерпретируемый язык; большая доля ПО; немедленно, «на лету»; 
опыт программиста; нормативный документ; справочное описание, 
указатель. 



1.2. Match the following  words with their definitions 

1. Syntax a) the creation of an executable program from
code written in a compiled programming 
language. 

2. High-level Language b) a program used to convert or translate
programs written in assembly code by humans 
to machine code (binary) that can be understood 
by the computer. 

3. Compile c) a set of rules for grammar and spelling. In
other words, it means using character structures 
that a computer can interpret.  

4. A script or scripting
language

d) that consists of easily understood keywords,
names, or tags that help format the overall view 
of a page and the data it contains. E.g. 
BBC, HTML, SGML, and XML. 

5. Assembler e) is a computer programming language that
isn't limited by the computer, designed for a 
specific job, and is easier to understand. It is 
more like human language and less like machine 
language. 

6. Markup language f) is a computer language with a series
of commands within a file capable of being 
executed without being compiled. E.g. 
Perl, PHP, and Python, JavaScript.  

1.3. Make up English-Russian pairs of the words equivalent in meaning: 

1. Time-consuming, 2. sophisticated, 3. to run, 4. client-server application,
5. environment, 6. tedious, 7. to treat.

1) Высокой сложности, 2) интерпретировать, 3) трудоемкий,
4) утомительный, 5) запускать на выполнение, 6) внешние устройства
системы, 7) клиент-серверное приложение. 



1.4. Read the text again and decide if the following statements are true or 
false 

1) Computer programs are collections of instructions that tell a user
how to interact with a computer.

2) Our work would have been very demanding and easy without
programming.

3) High-level programming languages or machine languages are the
most basic type of programming languages and can be understood
directly by a computer.

4) Assembly language is designed to be easily translated into machine
language.

5) High-level languages are relatively sophisticated sets of statements
utilizing words and syntax from human language and therefore easier
to read, write, and maintain.

6) Visual Basic is used to write system software, graphics and
commercial programs.

7) In a compiled language, the programmer writes more general
instructions and a compiler (a special piece of software)
automatically translates these high level instructions into machine
language.

8) The description of a programming language is usually split into the
three components of syntax (form) and semantics (meaning) and
links between them.

1.5. Answer the following questions on the text 

1) Which programming languages do you use? Why do you use them?
2) What are the examples of high-level languages?
3) Assembly language doesn’t require detailed knowledge of internal

computer architecture, does it?
4) What does “to compile the program” mean?
5) What does programming language theory deal with?
6) What would happen if you forgot to include the correct punctuation

in a statement?



2. Focus on Grammar

2.1. Choose the right variant  

Algorithmic languages 

1) Algorithmic languages _____to express mathematical or symbolic
computations.
A) are designed B) designed C) was  designed

2) The C programming language _______ in 1972 by Dennis
Ritchie and Brian Kernighan at the AT&T Corporation for
programming computer operating systems.
A) has been developed       B) was developed      C) developed

3) C ______with assembly language the power to exploit all the
features of a computer’s internal architecture.
A) share B) share C) is shared

4) Its capacity to structure data and programs through
the composition of smaller units is _______to that of ALGOL.
A) comparable B) compare C) comparability

5) ALGOL had recursive subprograms—procedures that
______invoke themselves to solve a problem by reducing it to a
smaller problem of the same kind.
A) can B) might C) could

6) ALGOL contributed a notation for _______the structure of a
programming language, Backus–Naur Form, which in some variation
became the standard tool for stating the syntax (grammar) of
programming languages.
A) describing B) description C) being described

7) ALGOL introduced block structure, in which ____ program is
composed of blocks that might contain both data and instructions and
have the same structure as an entire program.
A) the B) ---- C) a

8) C  uses a compact notation and provides the programmer _____the
ability to operate with the addresses of data as well as with their
values.
A) with B) --- C) for



9) The first important algorithmic language 
was FORTRAN (formula translation), designed in 1957 by 
an IBM team _____ John Backus. 
A) leading                     B)    lead by                    C) led by 

10) FORTRAN ______for scientific computations with real 
numbers and collections of them organized as one- or 
multidimensional arrays. 
A) was taken                   B) was intended               C) was composed 

 
3. Discussion  

 
3.1. Discuss the following questions in small or large groups. You can use 
the Internet resources if necessary 
 

1) What challenges did you run into when choosing these languages? 
2) Your friend says: “I just started learning to code, and at times, I feel 

like I’m simply not smart enough to understand concepts right away. 
How do I prevent getting stuck and what’s the best way to keep 
learning and moving through material?” What would you suggest? 

3) How do you identify a problem in programming? 
 
 
3.2. Give a short explanation of the computer term ‘programming 
languages’ 
 
3.3.  Suggested topics for Presentations and Reports 
 

1) Types of programming languages. 
2) Business-oriented languages – SQL (structured query language) and 

COBOL (common business oriented language). 
3) The main problems faced by programmers. 

 

4. Additional Reading 

4.1. Read and translate the following text  ' Programming Paradigms'  

Programming languages mimic the operations of the computer they 
are running on. Therefore the computer they are designed for has a 
significant effect of how the programming language is created and which 



characteristics are attributed to the language. Various attributes of a 
programming language will determine the computational paradigm of the 
language. The following are different paradigms. 

Imperative Paradigm: Instructions are executed sequentially, 
variables are used to represent memory locations, and assignments are 
used change the values of variables. Imperative languages are also referred 
to as procedural languages, due to the sequence of statements that 
represent the commands. Most programming languages currently used are 
imperative. 

Functional Paradigm: Based on mathematics and the abstract 
notion of a function in lambda calculus. This paradigm bases the 
description of computation on the evaluation of functions or the 
application of functions to known values. Languages incorporating the 
functional paradigm are sometimes called applicative languages. The 
functional paradigm uses a functional call, where the program evaluates a 
function, transfers values as parameters to certain functions, and returns 
values from functions. LISP is an example of a functional programming 
language. 

Logic paradigm: Logic programming is based on the symbolic 
logic. These languages are based on a set of statements that describe the 
truth of a statement, rather than giving a sequence of sentences that are 
restricted to be executed in a particular manner. These languages have no 
need for loops, and the only necessity is the statement of properties of the 
computation. Since all properties are declared and there is no sequence of 
execution, logic programming is referred to as declarative programming. 
The only widely used logic based language is Prolog. 

Object-oriented Paradigm: This paradigm is based on the idea of 
an object. Objects can be described as a collection of locations together 
with all the operations that can change the values of these memory 
locations. An example of an object is a variable. In many object-oriented 
languages, objects are put into classes that represent all of the objects with 
the same characteristics. These classes define four things. First, a 
constructor allocates memory and provides an initial value for the data of 
an object. Second, a way to access the value from the first part of the class 
is determined. Then the procedures are executed and a value is defined. 
Object-oriented programming is found in numerous new languages and 
seems to be a staple for the future of programming. 



 
[http://www.csun.edu/~vgc30838/Projecth.html] 

 
4.2. Write a short summary of the text given above (Task 4.1.) 
 
4.3. Answer the following questions 

 
Test yourself 

 
Introduction to programming test questions 

 
1) What is a programming language? 

A) Written English 
B)  An artificial language used to program a computer 
C) A language used in pseudocode 

2) What is machine code? 
A)  The serial number of a computer 
B) A programming language that a computer understands 
C) The make and model of a computer 

3) What is a program? 
A) A series of step-by-step instructions that tell a computer how to 

solve a task 
B) A video that is watched on a computer 



C) A flowchart written on a computer 
4) What is a statement? 

A) A box in a flowchart 
B) A keyword in a programming language 
C) A calculation performed in a programming language 

5) What is an instruction? 
A) A box in a flowchart 
B) A calculation performed in a programming language 
C) One or more statements grouped together to instruct the computer 

to perform a task 
6) What does the statement 'print' do? 

A) Output a hard copy of a program to a printer 
B) Output a message on the screen 
C) Print a hard copy of a flowchart to a printer 

7) What does the statement 'while' do? 
A) Tell the computer to wait for a while before continuing with the 
program 
B) Implement selection 
C) Implement a loop 

8) What does the statement 'def' do? 
A) Creates a function or a procedure 
B) Implement a loop 
C) Implement selection 

9) What do the statements 'if' and 'else' do? 
A) Implement selection 
B) Implement a loop 
C) Tell the computer to wait for a while before continuing with the 

program 
10) How many statements are there in this line of code: print ("If I am 

17, I can drive a car")? 
A) There are two statements - 'print' and 'if' 
B) There are no statements 
C) There is one statement - 'print' 

[https://www.bbc.co.uk/bitesize/guides/zts8d2p/test] 
 
 
 
 



4.4. Translate the following sentences 
 

1) Язык программирования – это набор лексических, 
синтаксических и семантических правил, которые придумали 
люди, чтобы создавать программы.  

2) Изучить язык до начального уровня можно за 6–10 месяцев, но 
если ошибиться с выбором, язык может устареть, а вы потеряете 
время и деньги. 

3) Чтобы отслеживать востребованность языков 
программирования, компании составляют специальные 
рейтинги. 

4) C – один из самых старых и популярных языков 
программирования. Он «легкий» и быстрый, поэтому его 
используют там, где нужна высокая производительность. 
Например, для создания драйверов, операционных систем или 
ПО для микроконтроллеров. 

5) Java – кроссплатформенный (cross platform) язык с большим 
количеством библиотек и большим сообществом разработчиков. 

6) Кроссплатформенность – это возможность написать программу 
один раз и сразу пользоваться ей на нескольких операционных 
системах: Windows, Linux и MacOS.  

Благодаря библиотекам Java подойдет практически для всего: работы 
с графикой, звуком, создания небольших игр. 
 
 

Key answers to the task 4.3. 
1. B);  2. B);  3. A);  4. B);  5. C);  6. B);  7.C);  8. A);  9. A);  10. C). 

 
 
 
 
 
 
 
 
 
 
 



UNIT 6. Object-oriented Programming (OOP) 
-------------------------------------------------------------------------------- 
 
Learning objectives 
 to acquire basic knowledge about object-oriented programming and 

languages types in it 
 to understand the main features of object-oriented programming 
 to consider the difference between OOP and traditional programming 

 
Key words and phrases. Give Russian equivalents and remember the 
meanings of the key words and phrases used in the text 
 

Self-contained entities; formal set of rules; relational database; object 
database; encapsulation; inheritance; code modularity; routines; at the 
bottom of a hierarchy;  to be inherited; polymorphism; to be 
integrated; memory allocation; to dispense; “event-driven” 
programming; to succeed; portable; data addresses; feature; to 
extend; interrelated applications; to be similar to smth. 

 
Read the following text and do the exercises given after it  

 
	 

A programming language structure 
wherein the data and their associated 
processing ("methods") are defined as self-
contained entities called "objects." The norm 
today, object-oriented programming (OOP) 
languages, such as C++ and Java, provide a 
formal set of rules for creating and managing 
objects. The data are stored in a traditional 
relational database or in an object database if the data have a complex 
structure.  

There are three major features in object-oriented programming that 
makes them different than non-OOP languages: encapsulation, inheritance 
and polymorphism. 

Encapsulation Enforces Modularity 
Encapsulation refers to the creation of self-contained modules that 

bind processing functions to the data. These user-defined data types are 



called "classes," and one instance of a class is an "object." For example, in 
a payroll system, a class could be Manager, and Pat and Jan could be two 
instances (two objects) of the Manager class. Encapsulation ensures good 
code modularity, which keeps routines separate and less prone to conflict 
with each other. 

Inheritance Passes "Knowledge" Down 
Classes are created in hierarchies, and inheritance allows the 

structure and methods in one class to be passed down the hierarchy. That 
means less programming is required when adding functions to complex 
systems. If a step is added at the bottom of a hierarchy, only the processing 
and data associated with that unique step needs to be added. Everything 
else is inherited. The ability to reuse existing objects is considered a major 
advantage of object technology. 

Polymorphism Takes any Shape 
Object-oriented programming allows procedures about objects to be 

created whose exact type is not known until runtime. For example, a 
screen cursor may change its shape from an arrow to a line depending on 
the program mode. The routine to move the cursor on screen in response to 
mouse movement would be written for "cursor," and polymorphism allows 
that cursor to take on whatever shape is required at runtime. It also allows 
new shapes to be easily integrated. 

The following compares basic OOP terms with traditional 
programming. 
 

OOP Traditional Programming 
  

class define data + processing 
object data + processing 

attribute data (a field) 
method function 
message function call 

instantiate allocate a structure 

 



 
 

Fig. 9.  Relational vs. Object Modeling 
 

Instead of separate employee, department and job tables, an employee 
class contains the data and processing for all employees. Each subclass 
(manager, secretary, etc.) has its own data and processing but also inherits 
everything from the employee class. Changes made to the employee class 
affect every subclass.  

OOP Languages 
Today, C++, C#, Java, JavaScript, Visual Basic.NET and Python are 

popular object-oriented languages.  
The C++ language, developed in the mid-1980s, extended C by 

adding objects to it while preserving the efficiency of C programs. It has 
been one of the most important languages for both education and industrial 
programming. Large parts of many operating systems were written in C++. 
C++, along with Java, has become popular for developing commercial 
software packages that incorporate multiple interrelated applications. C++ 
is considered one of the fastest languages and is very close to low-level 
languages, thus allowing complete control over memory allocation and 
management. This very feature and its many other capabilities also make it 
one of the most difficult languages to learn and handle on a large scale. 

C# (pronounced C sharp like the musical note) was developed in 
2000. C# has syntax similar to that of C and C++ and is often used for 
developing games and applications for the Microsoft Windows operating 
system. 

In the early 1990s Java was designed by Sun Microsystems, Inc., as 
a programming language for the World Wide Web (WWW). Although it 
resembled C++ in appearance, it was object-oriented. In particular, Java 
dispensed with lower-level features, including the ability to manipulate 



data addresses, a capability that is neither desirable nor useful in programs 
for distributed systems. In order to be portable, Java programs are 
translated by a Java Virtual Machine specific to each computer platform, 
which then executes the Java program. In addition to adding interactive 
capabilities to the Internet through Web “applets,” Java has been widely 
used for programming small and portable devices, such as 
mobile telephones. 

Visual Basic was developed by Microsoft to extend the capabilities 
of BASIC by adding objects and “event-driven” programming: buttons, 
menus, and other elements of graphical user interfaces (GUIs). Visual 
Basic can also be used within other Microsoft software to program small 
routines. Visual Basic was succeeded in 2002 by Visual Basic .NET, a 
vastly different language based on C#, a language with similarities to C++. 

The open-source language Python was developed by Dutch 
programmer Guido van Rossum in 1991. It was designed as an easy-to-use 
language, with features such as using indentation instead of brackets to 
group statements. Python is also a very compact language, designed so that 
complex jobs can be executed with only a few statements. In the 2010s, 
Python became one of the most popular programming languages, along 
with Java and JavaScript. 

[https://www.computerlanguage.com/results.php?definition=object-
oriented+programming] 

[https://www.britannica.com/technology/computer-programming-language/] 
 

1. Text-based Assignments 
 

1.1. Give English equivalents of the following words and word 
combinations: 

 
В котором данные и методы; самодостаточный; сохранять в базе 
данных; особенности; наследование свойств; пример; обеспечивать; 
модульность кода; имеющий тенденцию; добавление функций; 
способность повторного использования; основное преимущество; 
время запуска; в ответ на; программный режим; влиять на что-л.; 
сохранять;  легкий в использовании; добавление отступов; вместо 
скобок; компактный язык. 
 
 
 



1.2. Put the phrases below into the right word order. Use them in the 
sentences of your own 

 
a) called self-contained "objects" entities – _______________________ 
b) types data user-defined – __________________________________ 
c) a hierarchy is of added the bottom at – ________________________ 
d) an arrow change from shape to a its line – _____________________ 
e) programs the efficiency while of preserving C – ________________ 
f) with complex statements executed jobs can only be a few  – 

______________________________________________________ 
 
1.3. Match the following  words  with their definitions 

 
1. Modularity a) a database that maintains a set of separate, related 

files (tables), but combines data elements from the 
files for queries and reports when required.  

2. relational 
database 

b) run a program, which causes the computer to carry 
out its instructions. 

3. polymorphism c) a database that is managed by an object-oriented 
database management system (ODBMS). 

4. object 
database 

d) In object technology, the creation of self-
contained modules that contain both the data and the 
processing.  

5. encapsulation e) the characteristic of a system that has been divided 
into smaller subsystems which interact with each 
other. 

6. execute f) meaning many shapes. In object technology, 
polymorphism is exhibited when a request (message) 
produces different results based on the object that it 
is sent to. 

 
1.4. Answer the following questions on the text 
 

1) Where are the data stored in OOP? 
2) What are the major features in OOP? 
3) What does encapsulation refer to and what does it ensure? 
4) How are classes created? 
5) What is the difference between C++ and C #? 



6) When was the open-source language Python developed? 
7) What does ‘a very compact language’ mean?  

 
1.5. Read the text again and decide if the following statements are true 
or false 

 
1) Object-oriented programming languages, such as C++ and Java, 

provide a formal set of rules for creating and managing objects. The 
data are stored in a traditional relational database.  

2) There is one major feature in object-oriented programming that 
makes them different than non-OOP languages. It is polymorphism. 

3) Classes are created in hierarchies, and inheritance allows the 
structure and methods in one class to be passed down the hierarchy.  

4) Object-oriented programming allows procedures about objects to be 
created whose exact type is not known until runtime.  

5) The C++ language, developed in 2000s, extended C by adding 
objects to it while preserving the efficiency of C programs.  

6) In the early 1990s Java was designed by Sun Microsystems, Inc., as a 
programming language for the World Wide Web (WWW).  

7) Visual Basic can also be used within other Microsoft software to 
program small routines. 

8) Java  and JavaScript are not  used for programming small and 
portable devices, such as mobile telephones. 

9) In the 2010s, Python became one of the most popular programming 
languages, along with Java and JavaScript. 

 
2. Focus on Grammar 

 
2.1. We can join two independent clauses (sentences) together using 
conjunctive adverbs. Conjunctive adverbs show cause and effect, 
sequence, contrast, comparison, or other relationships. 
The most common of these are: 
 

Accordingly 
Afterwards 
Also 
Consequently 
However 

Indeed 
Likewise 
Moreover 
Nevertheless 
Nonetheless 

Otherwise 
Similarly 
Still 
Therefore 

 
 



2.2. Learn the following rules and examples. Make up your own 
sentences with some of the conjunctive adverbs listed above.  

 

Learning the Rules: Examples of Conjunctive Adverbs 
 
Rule 1: Complete Sentences Connected With an Adverbial Require a 
Semicolon 
Complete sentence +; + adverbial connecting word + complete sentence. 
E.g. Jeffrey doesn’t want to learn programming languages; nevertheless, 
his mother is making him attend classes on programming. 
 
Nevertheless is the adverbial connecting word in the sentence above. It’s 
functioning the same way as a coordinating connecting word such as but, 
so, and yet. However, the difference here is that a coordinating conjunction 
does not require a semicolon, while an adverbial connecting word does. 
 
Rule 2: You Can Use Connecting Adverbials with a Single Main 
Clause 
You can use connecting adverbials at the beginning, middle, and end of a 
main clause. Here are some examples: 

a) Frank was put on hold by his cable company for nearly two 
hours. Eventually, he got in touch with a customer service rep. 

b) Jan has never gotten the high score in GTA. She is 
determined, nonetheless, to improve her score. 

c) There was something about studying for his exam on programming 
that made him anxious. He had no trouble studying 
informatics, however. 

 
Rule 3: Depending on the Sentence, You Might Not Need a Comma 
When Using a Connecting Adverbial 
Sometimes, a break in the sentence is too weak to justify halting the reader 
with a comma. In fact, a comma can make a sentence sound choppy.  
E.g. Harrison certainly didn’t like it when his teacher called on him to 
answer a question in class. Harrison, certainly, didn’t like it when his 
teacher called on him to answer a question in class. 
 



These are important skills for both academic and professional writing. 
Look at more conjunctive adverb examples below. 

a) Paul copied his classmate’s homework. As a result, his teacher 
docked his grade. 

b) Stacy went to the computer store; however, they were out of her 
favorite smartphone. 

c) Your work isn’t bad; in fact, you probably deserve a raise. 
d) She developed writers block; consequently, she didn’t write another 

novel for years. 
e) They forgot class was canceled for the week; undoubtedly, they had 

trouble figuring out how to spend their free time. 
 
 

3. Speaking and Writing 
 
3.1. Here are some amazing quotes and sayings about Object Oriented 

you must read. Discuss  them with your partner 
 

 Object-oriented programming offers a sustainable way to write 
spaghetti code. It lets you accrete programs as a series of patches. -
 Author: Paul Graham 

 Mac blinked. That smile should be registered as a deadly weapon. -
 Author: Kaje Harper 

 Never walk away from someone who deserves help; your hand is 
God's hand for that person. - Author: Eugene H. Peterson 

 Object-oriented programming as it emerged in Simula 67 allows 
software structure to be based on real-world structures, and gives 
programmers a powerful way to simplify the design and construction 
of complex programs. - Author: David Gelernter 

 Every dependency is like a little dot of glue that causes your class to 
stick to the things it touches. - Author: Sandi Metz 

 I invented the term 'Object-Oriented', and I can tell you I did not 
have C++ in mind. - Author: Alan Kay 



  
 

3.2. Explain in your own words each feature in object-oriented 
programming 
 

3.3. Suggested topics for Presentations and Reports 
 

1) What are the benefits of OOP?  
2) Criticism of OOP. What's Wrong With Object-Oriented 

Programming? 
3) Why is OOP so popular? 
4) Object-oriented terminology 
 

 
4. Additional reading 

 
4.1. Read and translate the following text  
 

Document formatting languages 
 

Document formatting languages specify the organization of printed 
text and graphics. They fall into several classes: text formatting notation 
that can serve the same functions as a word processing program, page 
description languages that are interpreted by a printing device and, most 
generally, markup languages that describe the intended function of 
portions of a document. 

TeX was developed during 1977–86 as a text formatting language 
by Donald Knuth, a Stanford University professor, to improve the quality 
of mathematical notation in his books. Text formatting systems, unlike 



WYSIWYG (“What You See Is What You Get”) word processors, embed 
plain text formatting commands in a document, which are then interpreted 
by the language processor to produce a formatted document for display or 
printing. TeX marks italic text, for example, as {\it this is italicized}, 
which is then displayed as this is italicized. 

TeX largely replaced earlier text formatting languages. Its powerful 
and flexible abilities gave an expert precise control over such things as the 
choice of fonts, layout of tables, mathematical notation, and the inclusion 
of graphics within a document. It is generally used with the aid of “macro” 
packages that define simple commands for common operations, such as 
starting a new paragraph; LaTeX is a widely used package. TeX contains 
numerous standard “style sheets” for different types of documents, and 
these may be further adapted by each user. There are also related programs 
such as BibTeX, which manages bibliographies and has style sheets for all 
of the common bibliography styles, and versions of TeX for languages 
with various alphabets. 

PostScript is a page-description language developed in the early 
1980s by Adobe Systems Incorporated on the basis of work at Xerox 
PARC (Palo Alto Research Center). Such languages describe documents in 
terms that can be interpreted by a personal computer to display the 
document on its screen or by a microprocessor in a printer or 
a typesetting device. 

PostScript commands can, for example, precisely position text, in 
various fonts and sizes, draw images that are mathematically described, 
and specify colour or shading. PostScript uses postfix, also called reverse 
Polish notation, in which an operation name follows its arguments. Thus, 
“300 600 20 270 arc stroke” means: draw (“stroke”) a 270-degree arc with 
radius 20 at location (300, 600). Although PostScript can be read and 
written by a programmer, it is normally produced by text formatting 
programs, word processors, or graphic display tools. 

The success of PostScript is due to its specification’s being in the 
public domain and to its being a good match for high-resolution laser 
printers. It has influenced the development of printing fonts, and 
manufacturers produce a large variety of PostScript fonts. 

SGML (standard generalized markup language) is an 
international standard for the definition of markup languages; that is, it is 
a metalanguage. Markup consists of notations called tags that specify the 
function of a piece of text or how it is to be displayed. SGML emphasizes 



descriptive markup, in which a tag might be “<emphasis>.” Such a markup 
denotes the document function, and it could be interpreted as reverse video 
on a computer screen, underlining by a typewriter, or italics in typeset text. 

SGML is used to specify DTDs (document type definitions). A DTD 
defines a kind of document, such as a report, by specifying what elements 
must appear in the document—e.g., <Title>—and giving rules for the use 
of document elements, such as that a paragraph may appear within a table 
entry but a table may not appear within a paragraph. A marked-up text 
may be analyzed by a parsing program to determine if it conforms to a 
DTD. Another program may read the markups to prepare an index or to 
translate the document into PostScript for printing. Yet another might 
generate large type or audio for readers with visual or hearing disabilities 
(3400). 

[https://www.typescriptlang.org/docs/handbook/typescript-from-scratch.html] 
 
4.2. Speak about TeX, PostScript,  SGML and their characteristics 
 
4.3. Translate the following sentences  
 

1) Объектно-ориентированное программирование представляет 
собой путь для овладения профессией программиста. С момента 
изобретения компьютера методологии программирования 
драматически изменяются, приспосабливаясь к растущей 
сложности программ.  

2) С ростом программ был изобретен язык Ассемблер, так что 
программист мог работать с большими и более сложными 
программами, используя символическое представление для 
машинных инструкций. 

3) В конце концов были введены языки высокого уровня, дающие 
программисту больше средств для решения проблемы 
сложности программ. Первым широко распространенным 
языком был FORTRAN. Хотя FORTRAN был очень 
впечатляющим первым шагом, его трудно считать языком, 
обеспечивающим ясность и легкость понимания программ. 

4) Вехами в развитии программирования являются методы, 
которые служат решению проблемы возрастающей сложности 
программ. На каждом этапе этого пути новый подход включает 
в себя лучшие элементы предыдущих методов.  



5) Объектно-ориентированное программирование впитало в себя 
лучшие идеи структурного программирования и комбинирует их 
с новыми мощными концепциями, позволяющими увидеть 
задачу программирования в новом свете.  

6) Объектно-ориентированное программирование позволяет легко 
разложить задачу на подгруппы взаимодействующих частей. 
Затем можно преобразовать эти подгруппы в единицы, 
называемые объектами. 

7) Все объектно-ориентированные языки имеют три общие 
концепции: инкапсуляцию, полиморфизм и наследование. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



UNIT 7. Elements of Programming. Control Structures 
-------------------------------------------------------------------------------- 
 
Learning objectives 
 to understand the difference between control structures and data 

structures 
 to acquire basic knowledge about three basic control structures 
 to consider an example of a subprogram and its function 

 
Key words and phrases. Give Russian equivalents and remember the 
meanings of the key words and phrases used in the text 
 

To express algorithms; procedural languages; sequence; iterative; to 
assign values; to find the roots; conditional; quadratic equation; 
looping; variable; to assume; discriminant; subroutine; absolute-value  
function; multiplication; to be implemented; repetitions; 
approximation; tractable subprograms; a simple restatement; a square 
root; paths of execution; recursive subprograms; factorial function. 

 
Before reading the text watch the video from 
https://study.com/academy/lesson/5-basic-elements-of-programming.html. 
Render its content in Russian 

 
Read the following text and do the exercises given after it  

 
Despite notational differences, contemporary computer languages 

provide many of the same programming structures. These include 
basic control structures and data structures. The former provide the means 
to express algorithms, and the latter provide ways to organize information. 

Control structures 
Programs written in procedural languages, the most common kind, 

are like recipes, having lists of ingredients and step-by-step instructions for 
using them. The three basic control structures in virtually every procedural 
language are: 

1. Sequence—combine the liquid ingredients, and next add the dry 
ones. 

2. Conditional—if the tomatoes are fresh then simmer them, but if 
canned, skip this step. 



3. Iterative—beat the egg whites until they form soft peaks. 
Sequence is the default control structure; instructions are executed 

one after another. They might, for example, carry out a series of arithmetic 
operations, assigning results to variables, to find the roots of a quadratic 
equation ax2 + bx + c = 0. The conditional IF-THEN or IF-THEN-ELSE 
control structure allows a program to follow alternative paths of 
execution. Iteration, or looping, gives computers much of their power. 
They can repeat a sequence of steps as often as necessary, and appropriate 
repetitions of quite simple steps can solve complex problems. 

These control structures can be combined. A sequence may contain 
several loops; a loop may contain a loop nested within it, or the two 
branches of a conditional may each contain sequences with loops and more 
conditionals. In the “pseudocode” used in this article, “*” indicates 
multiplication and “←” is used to assign values to variables. The following 
programming fragment employs the IF-THEN structure for finding one 
root of the quadratic equation, using the quadratic formula: 

. 
The quadratic formula assumes that a is nonzero and that the 

discriminant (the portion within the square root sign) is not negative (in 
order to obtain a real number root). Conditionals check those assumptions: 

IF a = 0 THEN 
ROOT ← −c/b 
ELSE 
DISCRIMINANT ← b*b − 4*a*c 
IF DISCRIMINANT ≥ 0 THEN 
ROOT ← (−b + SQUARE_ROOT(DISCRIMINANT))/2*a 
ENDIF 
ENDIF 
The SQUARE_ROOT function used in the above fragment is an 

example of a subprogram (also called a procedure, subroutine, or 
function). A subprogram is like a sauce recipe given once and used as part 
of many other recipes. Subprograms take inputs (the quantity needed) and 
produce results (the sauce). Commonly used subprograms are generally in 
a collection or library provided with a language. Subprograms may call 
other subprograms in their definitions, as shown by the following routine 
(where ABS is the absolute-value function). SQUARE_ROOT 
is implemented by using a WHILE (indefinite) loop that produces a good 



approximation for the square root of real numbers unless x is very small or 
very large. A subprogram is written by declaring its name, the type of 
input data, and the output: 

FUNCTION SQUARE_ROOT(REAL x) RETURNS REAL 
ROOT ← 1.0 
WHILE ABS(ROOT*ROOT − x) ≥ 0.000001 
AND WHILE ROOT ← (x/ROOT + ROOT)/2 
RETURN ROOT 
Subprograms can break a problem into smaller, more tractable 

subproblems. Sometimes a problem may be solved by reducing it to a 
subproblem that is a smaller version of the original. In that case the routine 
is known as a recursive subprogram because it solves the problem by 
repeatedly calling itself. For example, the factorial function in 
mathematics (n! = n·(n−1)⋯3·2·1—i.e., the product of the first n integers), 
can be programmed as a recursive routine: 

FUNCTION FACTORIAL(INTEGER n) RETURNS INTEGER 
IF n = 0 THEN RETURN 1 
ELSE RETURN n * FACTORIAL(n−1) 
The advantage of recursion is that it is often a simple restatement of a 

precise definition, one that avoids the bookkeeping details of 
an iterative solution. 

At the machine-language level, loops and conditionals are 
implemented with branch instructions that say “jump to” a new point in the 
program. The “goto” statement in higher-level languages expresses the 
same operation but is rarely used because it makes it difficult for humans 
to follow the “flow” of a program. Some languages, such as Java and Ada, 
do not allow it. 

 
1. Text-based Assignments 

 
1.1. Give English equivalents of the following words and word 

combinations: 
 
Различия в написании; современный; управляющая структура; 
пооперационная инструкция; последовательность; управляющая 
структура по умолчанию; выполнять арифметические операции; 
находить корень; позволять; соответствующие повторения; решать 
проблемы; содержать; оператор цикла с условием; допущения; 



алгоритм вычислений; функция абсолютного значения; рекурсивная 
подпрограмма; точное определение. 
 
1.2. Find synonyms for the following words from the text 
 
1. Contemporary, 2. control, 3. structure, 4. to assign, 5. to declare, 6. root, 
7. precise,  8. to follow, 9. routine, 10. to repeat. 
 
1) command, 2) present (new, late), 3)  to iterate, 4)  manner of making,  
5)  to give (value),  6) to proclaim, 6) procedure (operation),  7) stem,  
8) well-defined, 9) to practice, 10) order. 
 
1.3. Match the following  words with their definitions 

 
1. Conditionals a) an operation that requires successive executions of 

instructions or processes. 
2. Iterative 
operation 

b) a set of instructions in a program that perform a 
task. Programs are made up of many routines, which 
are also called "subroutines" and very often 
"functions."  

3. Loop c) to be represented by a figure, symbol, or formula. 
4. While loop d) the action of doing something over and over again. 
5. Routine e) a mathematical statement saying that two amounts 

or values are the same, for example 6x4=12x2. 
6. Equation f) a loop that continues to repeat while a condition is 

true. 
7. Express g) statements that only run under certain conditions. 
 
1.4. Answer the following questions on the text 
 

1) How many basic control structures are there in virtually every 
procedural language? 

2) What may a sequence contain? 
3) How is SQUARE_ROOT implemented? 
4) What is the main advantage of  recursion? 
5) Which type of programming structure requires each instruction to be 

performed in order, with no possibility of skipping an action or 
branching off to another action? 



6) The if/else statement conditionally evaluates two statements. Is it 
correct? 

7) Which control structure is used for repeated operations? 
8) Which control structure is used to group statements that provide a 

single logical operation together?  
 

 
1.5. Use the correct word to fill in the gaps in the following sentences  

 
a single logical operation                 a series of statements 
variables                                           a test 
default                                              to alter  
a subprogram               While  

 

Program Flow of Control 

 

Sequence is composed of a) ______ which are 
executed one by one from top to bottom. Sequence 
is the b) ______ flow of control for many 
programming languages. All of the programs 
illustrated so far have used this flow of control for 
their execution. 

 

Selection is used  c) ______ the flow of control 
when a choice needs to be made between two or 
more actions. Often the choice is based on the state 
of some  d) _______ in the program. This control 
structure is commonly specified using the 
keywords If and Else. 

 

Loop is a control structure that causes a set of 
statements to be executed repeatedly. With each 
loop iteration, e) ______  is performed to determine 
whether the loop should continue or end. Often this 
control structure is specified using the key word f) 
_______ . 



 

Subprograms are a way of grouping statements that 
provide g) _______ . An example subprogram 
might be SquareRoot which could find the square 
root of a number and return the result to the main 
program. The keyword Call indicates h) _______.

 
Key answers to task 1.5. 

a) a series of statements 
b) default 
c) to alter 
d) variables 
e) to test 
f) while 
g) a single logical operation  
h) a subprogram                 



 

2. Focus on Grammar 
 
2.1. Study the table of  Functions of the Infinitive and make up your own 
sentences  

 
 Subject То break a problem into 

smaller, more tractable 
subprograms is not 
difficult. 

Разбить проблему на 
более мелкие, более 
понятные подпрограммы 
несложно. 

Adverbial modifier of 
purpose (can be introduced 
by in order and so as) 
 

We can also use the 
computer's memory to 
store other types of data 
such as letters and 
characters like 'a', '?', or 
'Z'. 

Мы также можем 
использовать память 
компьютера для 
хранения других типов 
данных, таких как буквы 
и символы, такие как 
«а», «?» или «Z». 
 

Adverbial modifier of 
result (it chiefly occurs 
after adjectives modified 
by the adverbs enough and 
too, and after the 
conjunction as) 

The finds are too few to be 
spoken about.  
 
 
The rule has been so 
formulated as to be easily 
observed by everybody.  

Находок слишком мало, 
чтобы о них (можно 
было) говорить. 
 
Правило было сформули-
ровано таким образом, 
чтобы все могли легко 
его соблюдать. 

Predicative A typical way of 
specifying the type of a 
variable is to write the type 
name before the variable 
identifier. 

Типичным способом 
указания типа 
переменной является 
запись имени типа перед 
идентификатором 
переменной. 

Attribute This is the main advantage 
to be taken into 
consideration.  

Это основное 
преимущество, которое 
нужно учитывать. 

Object The conditional IF-THEN 
or IF-THEN-ELSE control 
structure allows a program 
to follow alternative paths 
of execution.  

Условная управляющая 
структура IF-THEN или 
IF-THEN-ELSE 
позволяет программе 
следовать альтер-
нативным способам 
выполнения. 



 

2.2. Comment on the form and functions of the Infinitives and translate the 
following sentences 
 

1) Input is one of the two elements that are used by every program 
because every program needs some data to work with. 

2)  The bank wants to make sure it isn't someone who's not you trying 
to access your account.  

3) Computers can perform all kinds of mathematical operations and 
functions, from the simple addition or subtraction needed to update 
your checking account balance after a withdrawal or deposit, to the 
complex calculus needed to put a satellite into orbit. 

4) To use these elements, one imports them. 
5) We can use assignment statements to give new names to existing 

functions. 
6) One of our goals in this chapter is to isolate issues about thinking 

procedurally.  
7) My aim was to create a program that could interact with humans like 

the modern-day chatbots. 
8) To display output on the terminal the ‘echo’ command is used 

followed by the text to display. 
 

3. Discussion 
 
3.1. Discuss the following questions with your partner 
 

1) How do programs work, and how can you build them?  
2) How many important control structures do algorithms require? What 

are they? 
 

3.2. Suggested topics for Presentations and Reports 
 

1) The role of SemiColon in various Programming Languages 
2) Structures in C++ 
3) A two-way selection and a  multi-way selection control structures. 

 
 
 
 



 

 

4. Additional Reading 

4.1. Read and translate the following text about some declarative 
languages 

Declarative languages 
 

Declarative languages, also called nonprocedural or very high level, 
are programming languages in which (ideally) a program specifies what is 
to be done rather than how to do it. In such languages there is less 
difference between the specification of a program and its implementation 
than in the procedural languages described so far. The two common kinds 
of declarative languages are logic and functional languages. 

Logic programming languages, of which PROLOG (programming 
in logic) is the best known, state a program as a set of logical relations 
(e.g., a grandparent is the parent of a parent of someone). Such languages 
are similar to the SQL database language. A program is executed by an 
“inference engine” that answers a query by searching these relations 
systematically to make inferences that will answer a query. PROLOG has 
been used extensively in natural language processing and 
other AI programs. 

Functional languages have a mathematical style. A functional 
program is constructed by applying functions to arguments. Functional 
languages, such as LISP, ML, and Haskell, are used as research tools in 
language development, in automated mathematical theorem provers, and in 
some commercial projects. 

Scripting languages are sometimes called little languages. They are 
intended to solve relatively small programming problems that do not 
require the overhead of data declarations and other features needed to 
make large programs manageable. Scripting languages are used for 
writing operating system utilities, for special-purpose file-manipulation 
programs, and, because they are easy to learn, sometimes for considerably 
larger programs. 

Perl was developed in the late 1980s, originally for use with 
the UNIX operating system. It was intended to have all the capabilities of 
earlier scripting languages. Perl provided many ways to state common 
operations and thereby allowed a programmer to adopt any convenient 
style. In the 1990s it became popular as a system-programming tool, both 
for small utility programs and for prototypes of larger ones. Together with 



 

other languages discussed below, it also became popular for programming 
computer Web “servers.” (2200) 

 [https://www.britannica.com/technology/computer-programming-
language/Visual-Basic] 

 
4.2. Describe some declarative languages in class   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

U
---------
 
Learning
 to 
 to 

 
Key wo
meaning
 

Ty
cha
com
dat
reu
ope

 
Before 
https://w
ourse.   R
concept 

 
Re
 

 
Wh

organize
organize
structure
which o
while 
program
addresse
integers
strings. 
data typ

 

UNIT 8. 
----------

g objecti
understa
consider

ords and
gs of the 

ypes of d
aracter 
mponent
ta types
usability;
eration. 

read
www.you
Render it
data stru

ead the fo

hereas 
e algorith
e inform
es specif
perations
eliminat

mmer to
es. Simp
, real nu
Compou
es. 

Elemen
----------

ives 
and basic
r differen

d phrases
key word

data; to 
strings; 

ts or field
s; to hi
; abstract

ding t
tube.com
ts conten
ucture 

ollowing 

con
hms, 
mation. I
fy types
s can be 
ting th
 keep 
ple data 
umbers, B
und data 

nts of P
----------

c and adv
nt types o

s. Give 
ds and ph

specify;
the ar

ds; to sum
ide; app
tion; to m

the t
m/watch?
nt in Russ

text and 

trol 
data 

In parti
 of data
performe

he need
track o
structur

Booleans
structure

Program
---------

vanced co
of data st

Russian
hrases us

; to keep
rray; a 
m; dynam

propriate;
make pu

text w
?v=DuDz
sian and

d do the ex

structu
structu

cular, d
a, and th
ed on the
d for 

of memo
res inclu
s (true/fa
es are for

mming. 
---------

oncepts o
tructures

 equival
sed in the

p track; 
collecti

mic alloc
; to om
ublic; loo

watch 
z6B4cqV
d explain

exercises 

 

ures 
ures 
data 
hus 
em, 

a 
ory 
ude 
alse), and
rmed by

Data St
----------

of data st

lents and
e text 

integers
on of 
cation; a 

mit; info
okup ope

the 
Vc&ab_ch

how you

given aft

d charact
y combin

tructur
---------

tructure 

d remem

s; real n
vectors;

a bintree;
ormation 
eration; i

video 
hannel=C
u unders

fter it 

ters or c
ning one 

es 
---------

mber the

numbers;
 record
 abstract

hiding;
insertion

from
CrashC
stand the

character
or more

e 

; 
d 
t 
; 
n 

m 

e 

r 
e 



 

The most important compound data structures are the array, 
a homogeneous collection of data, and the record, 
a heterogeneous collection. An array may represent a vector of numbers, a 
list of strings, or a collection of vectors (an array of arrays, or 
mathematical matrix). A record might store employee information—name, 
title, and salary. An array of records, such as a table of employees, is a 
collection of elements, each of which is heterogeneous. Conversely, a 
record might contain a vector—i.e., an array. 

Record components, or fields, are selected by name; for example, 
E.SALARY might represent the salary field of record E. An array element 
is selected by its position or index; A[10] is the element at position 10 in 
array A. A FOR loop (definite iteration) can thus run through an array with 
index limits (FIRST TO LAST in the following example) in order to sum 
its elements: 

FOR i ← FIRST TO LAST 
SUM ← SUM + A[i] 
Arrays and records have fixed sizes. Structures that can grow are 

built with dynamic allocation, which provides new storage as required. 
These data structures have components, each containing data and 
references to further components (in machine terms, their addresses). Such 
self-referential structures have recursive definitions. A bintree (binary tree) 
for example, either is empty or contains a root component with data and 
left and right bintree “children.” Such bintrees implement tables of 
information efficiently. Subroutines to operate on them are naturally 
recursive; the following routine prints out all the elements of a bintree 
(each is the root of some subtree): 

PROCEDURE TRAVERSE(ROOT: BINTREE) 
IF NOT(EMPTY(ROOT)) 
TRAVERSE(ROOT.LEFT) 
PRINT ROOT.DATA 
TRAVERSE(ROOT.RIGHT) 
ENDIF 
Abstract data types (ADTs) are important for large-scale 

programming. They package data structures and operations on them, 
hiding internal details. For example, an ADT table provides insertion and 
lookup operations to users while keeping the underlying structure, whether 
an array, list, or binary tree, invisible. In object-oriented languages, classes 
are ADTs and objects are instances of them. The following object-oriented 



 

pseudocode example assumes that there is an ADT bintree and a 
“superclass” COMPARABLE, characterizing data for which there is a 
comparison operation (such as “<” for integers). It defines a new ADT, 
TABLE, that hides its data-representation and provides operations 
appropriate to tables. This class is polymorphic—defined in terms of an 
element-type parameter of the COMPARABLE class. Any instance of it 
must specify that type, here a class with employee data (the 
COMPARABLE declaration means that PERS_REC must provide a 
comparison operation to sort records). Implementation details are omitted. 

 
CLASS TABLE OF <COMPARABLE T> 
PRIVATE DATA: BINTREE OF <T> 
PUBLIC INSERT(ITEM: T) 
PUBLIC LOOKUP(ITEM: T) RETURNS BOOLEAN 
END 
 
CLASS PERS_REC: COMPARABLE 
PRIVATE NAME: STRING 
PRIVATE POSITION: {STAFF, SUPERVISOR, MANAGER} 
PRIVATE SALARY: REAL 
PUBLIC COMPARE (R: PERS_REC) RETURNS BOOLEAN 
END 
 
EMPLOYEES: TABLE <PERS_REC> 
 
TABLE makes public only its own operations; thus, if it is modified 

to use an array or list rather than a bintree, programs that use it cannot 
detect the change. This information hiding is essential to managing 
complexity in large programs. It divides them into small parts, with 
“contracts” between the parts; here the TABLE class contracts to provide 
lookup and insertion operations, and its users contract to use only the 
operations so publicized. 

Advantages of Data structures 
The following are the advantages of a data structure: 

 Efficiency: If the choice of a data structure for implementing a 
particular ADT is proper, it makes the program very efficient in 
terms of time and space. 

 Reusability: The data structure provides reusability means that 



 

 

multiple client programs can use the data structure. 
 Abstraction: The data structure specified by an ADT also provides 

the level of abstraction. The client cannot see the internal working of 
the data structure, so it does not have to worry about the 
implementation part. The client can only see the interface. 

[https://www.javatpoint.com/data-structure-tutorial] 
 
 

1. Text-based Assignments 
 

1.1. Give English equivalents of the following words and word 
combinations: 
 

Сконструировать алгоритмы; в частности; целые числа; булевские 
значения;  составные структуры данных; собрание однородных 
данных; запись; наоборот; представлять; массивы; индекс; 
определенная итерация; динамическое  распределение памяти; 
двоичное (бинарное) дерево; примеры; представление данных; 
обнаруживать изменения; последовательный поиск; возможность 
повторного использования; абстрактный тип данных (уникальный 
тип данных, определённый в терминах, применяемых к объектам 
операций (т.е. набора функций доступа). 
 

1.2. Match the following  words with their definitions:  
 

1. Tree  topology a) a group of related data values (called elements) 
that are grouped together.  They must be the same 
data type.  

2. Pseudocode b) either a pointer or an array with only one 
dimension. In computer graphics, the term  describes 
a line with a starting and ending point.  

3. Array c) a special type of structure where many connected 
elements are arranged like the branches of a tree. For 
example, they are frequently used to organize the 
computers in a corporate network, or the information 
in a database. 

4. Field d) a function or method that repeatedly calculates a 
smaller part of itself to arrive at the final result. It is 
similar to iteration. 



 

5. Data structure e) a computer programming language that resembles 
plain English that cannot be compiled or executed, 
but explains a resolution to a problem. 

6. Recursive f) a single item of data contained in a column within 
a database or software program. For example, it may 
be a customer name, address, or phone number. 

7. Vector g) a predefined format for efficiently storing, 
accessing, and processing data in a computer 
program. 

 
1.3. Answer the following questions on the text 
 
1) What do data structures do in terms of computer programming? 
2) What do simple data structures include? 
3) How is an array element selected? 
4) What do an ADT table provide? 
5) What is a tree data structure? 
6) Which of the following data structure (arrays, records, pointers) can’t 

store the non-homogeneous data elements?  
 
1.4. Read the text again and decide if the following statements are true or 

false. 
 

1) Data structures specify types of data, and thus which operations can 
be performed on them, keeping the need for a programmer to keep 
track of memory addresses. 

2) Compound data structures are formed by combining one or more 
data types. 

3) The most important compound data structures are the array, 
a homogeneous collection of data, and the record, 
a heterogeneous collection.  

4) An array of records, such as a table of employees, is a collection of 
elements, each of which is homogeneous. 

5) An array element is selected by its position or index; A[10] is the 
element at position 10 in array A.  

6) Arrays and records do not have fixed sizes. Structures that can grow 
are built with dynamic allocation, which provides new storage as 
required.  



 

7) Abstract data types are important for large-scale programming. They 
package data structures and operations on them, hiding internal 
details.  

8) For example, an ADT table provides insertion and lookup operations 
to users while keeping the underlying structure, whether an array, 
list, or binary tree, invisible.  

9) The data structure specified by an ADT cannot provide the necessary  
level of abstraction. The client cannot see the internal working of the 
data structure. 

10) The client can only see the interface. 
 
Key answers to the task 1.2. 
1.c);  2.e);  3.a); 4.f);  5.g);  6.d);  7.b). 
 

2. Focus on Grammar 
 
2.1. Complete the sentences using the bare infinitive or to-infinitive of the 
verbs in brackets 
 

1) She  saw me (turn  off) the computer. 
2) Our boss usually encourages all the staff (take) the refresher courses. 
3) We made her (check) all the receipts once again. 
4) They didn’t dare (interrupt) my presentation. 
5) He decided (continue) his programming classes. 
6) What makes you (think) so? 
7) He advised me (show) my design project to the manager. 
8) They ordered me (leave) the office immediately. 
9) We consider this company (be) the most reliable partner. 
10) He helped me (analyze) all the given information. 
11) I heard the negotiations (stop). 
12) My parents didn’t let me (stay) there late. 
13) We told our secretary (check) the mail in the evening. 
14) I heard them (speak) in a loud voice. 
15) Some scientists consider Mars (be covered) with vegetation. 
16) Another possibility was (use) quartz.  

 
 
 



 

Infinitive Constructions 
 

Complex Object ( The Objective with the infinitive construction) 
 

Subject Predicate Noun in the common case + infinitive 

Pronoun in the objective case

He /believed  the results /of this test to have been plotted/ 
in the diagram. 
 

E.g. The circumstances forced him to leave the town. –
 Обстоятельства заставили (вынудили) его уехать из города. 
NOTE  
 After the verbs to see, to notice when they denote sense perception the 
infinitive of the verb "to be" is not used. Instead a subordinate clause is 
used. E.g. We saw that he was in. – Я увидел, что он дома. 
 
Complex Subject (The Subjective Infinitive Construction) 

Noun in the common case or 
pronoun in the nominative case 

A finite verb Infinitive  

The painter   

He seemed to see nothing. 

The treaty  is said  to have been 
signed  

yesterday. 

 

The for-to-infinitive construction 
preposition noun/ pronoun infinitive 

They waited for the door to open. 

It is useless for me to speak to him. 

E.g. It was easy for me to answer that question. —
 Мне легко было ответить на этот вопрос. 
 
2.2. Sort out the sentences given below into corresponding columns. The 
first two are done for you. Translate them  
 

Complex 
Object 

1, 

Complex 
Subject. 

2, 



 

1) The return makes one love the farewell. 
2) His policy is no policy. And this in itself is supposed to be a policy. 
3) Don’t let what you cannot do interfere with what you can do. 
4) The traditional toast ‘Bottoms up’ is known to be absolutely taboo in 

the Navy. 
5) The last drop makes the cup run over. 
6) Ambassadors are said to be eyes and ears of states. 
7) Diplomacy is thought to be the art of jumping into troubled waters 

without making a splash. 
8) Experience is said to be a comb which nature gives us when we are 

bold. 
9) It often happens that things turn out to be different from what they at 

first appear to be. 
10) You can take the horse to the water but you can’t make him drink it. 
11) The decision is sure to be adopted tomorrow and we might get 

acquainted with it. 
12) It is true, however, as Wilkinson pointed out, that fast transitions are 

more likely to have been observed than slow ones.  
13) The engineer wants the workers to use soft rubber for electrical 

insulation. 
 

3. Discussion  
 
3.1. Give a short explanation of the terms ‘Control Structure’ and ‘Data 
Structure’ 
 
3.2 Discuss the following questions in class. You can use some 

additional Internet resources if necessary  
 
1) Which language is best for Data Structure and algorithms? Most 

competitive programmers use C++. Can you explain why it is so? 
2) How do you start learning DSA? 
3) Is learning data structure and algorithms hard? 
4) What are Python data structures? 
5) How many days does it take to learn data structure and algorithms? 

 
 
 



 

3.3. Make a report on the  future prospects of using various programming 
languages 

S.No. Languages Future Scope 

1. Python 

Python, without a doubt, has a bright future in the 
programming language development area, 
particularly in the disciplines of data 
visualisation, artificial intelligence, data science 
and machine learning. 

2. Java 

Java is widely utilised in many businesses. It may 
also be used to make a variety of goods and has a 
wide range of uses. It is currently the most 
widely used programming language, so it’s pretty 
worth learning. 

3. C++ 

C++ has a wide range of applications, and 
studying it is never a bad thing. It is a very 
simple language to pick up and understand. In the 
industry, it has a wide range of applications. 
Along with graphic designs and 3-D models, it’s 
also employed in games. 

4. C 

Although C is out of date in some applications, it 
is not going away anytime soon. It has a wide 
range of real-world applications, and it will 
continue to be used in the industry for many 
years to come.  

5. C# 

C# is a language that is gaining in popularity and 
is likely to remain so in the coming years due to 
its effective capabilities in producing games and 
its resilience, both of which benefit the gaming 
industry. It’s also quite beneficial in business 
applications. 

6. Javascript 

JavaScript is a widely-used programming 
language. It is so extensively used that another 
programming language may take a long time to 
replace it. It is also used in artificial intelligence 
and other fields, in addition to web development. 



 

 

This language should be at the top of anyone’s 
learning priority list. 

7. Ruby 

In today’s world, Ruby is still utilised for a large 
number of applications. As a result, it’s a great 
language to learn because you’ll be able to create 
complex apps in no time. It also has robust 
technology. Therefore it is still relevant today. 

 
 

4. Additional Reading 

4.1. Read and translate the following text 

C# (/si ʃɑːrp/ see sharp) is a general-purpose, multi-paradigm 
programming language. C# encompasses static typing, strong 
typing, lexically coped, imperative, declarative, functional, generic, object-
oriented (class-based), and component-oriented programming disciplines. 
During the development of the .NET Framework, the class libraries were 
originally written using a managed code compiler system called "Simple 
Managed C" (SMC).  

 In January 1999, Anders Hejlsberg formed a team to build a new 
language at the time called Cool, which stood for "C-like Object Oriented 
Language". Microsoft had considered keeping the name "Cool" as the final 
name of the language, but chose not to do so for trademark reasons. By the 
time the .NET project was publicly announced at the July 
2000 Professional Developers Conference, the language had been renamed 
C#, and the class libraries and ASP.NET runtime had been ported to C#. 

Hejlsberg is C#'s principal designer and lead architect at Microsoft, 
and was previously involved with the design of Turbo 
Pascal, Embarcadero Delphi (formerly CodeGear Delphi, Inprise Delphi 
and Borland Delphi), and Visual J++. In interviews and technical papers 
he has stated that flaws in most major programming languages 
(e.g. C++, Java, Delphi, and Smalltalk) drove the fundamentals of 
the Common Language Runtime (CLR), which, in turn, drove the design 
of the C# language itself. 

James Gosling, who created the Java programming language in 1994, 
and Bill Joy, a co-founder of Sun Microsystems, the originator of Java, 
called C# an "imitation" of Java; Gosling further said that "[C# is] sort of 



 

Java with reliability, productivity and security deleted." Klaus Kreft and 
Angelika Langer (authors of a C++ streams book) stated in a blog post that 
"Java and C# are almost identical programming languages. Boring 
repetition that lacks innovation," "Hardly anybody will claim that Java or 
C# are revolutionary programming languages that changed the way we 
write programs," and "C# borrowed a lot from Java - and vice versa. Now 
that C# supports boxing and unboxing, we'll have a very similar feature in 
Java." In July 2000, Hejlsberg said that C# is "not a Java clone" and is 
"much closer to C++" in its design.  

Since the release of C# 2.0 in November 2005, the C# and Java 
languages have evolved on increasingly divergent trajectories, becoming 
two quite different languages. One of the first major departures came with 
the addition of generics to both languages, with vastly different 
implementations. C# makes use of reification to provide "first-class" 
generic objects that can be used like any other class, with code 
generation performed at class-load time.  

Furthermore, C# has added several major features to accommodate 
functional-style programming, culminating in the LINQ extensions 
released with C# 3.0 and its supporting framework of lambda 
expressions, extension methods, and anonymous types. These features 
enable C# programmers to use functional programming techniques, such 
as closures, when it is advantageous to their application. The LINQ 
extensions and the functional imports help developers reduce the amount 
of boilerplate code that is included in common tasks like querying a 
database, parsing an xml file, or searching through a data structure, 
shifting the emphasis onto the actual program logic to help improve 
readability and maintainability (2800) 

[ https://en.wikipedia.org/wiki/C_Sharp_(programming_language)] 
 

4.2. Ask an appropriate question for the response 
 

1) C#  is a general-purpose, multi-paradigm programming language.  
2) Hejlsberg is C#'s principal designer and lead architect at Microsoft. 
3) In January 1999. 
4) These features enable C# programmers to use functional 

programming techniques, such as closures, when it is advantageous 
to their application. 

5) The LINQ extensions and the functional imports. 



 

4.3. Translate the following sentences 
 

1) Массив – структурированный тип данных, состоящий из 
фиксированного числа однотипных элементов, объединённых 
одним именем,  где каждый элемент имеет свой номер (индекс). 

2) Как мы уже отмечали ранее, алгоритмам требуются две важные 
управляющие структуры: для итераций и для выбора.  

3) Обе они поддерживаются в Python в различных формах. 
Программисты могут выбирать тот способ, который будет более 
уместным в данных обстоятельствах.  

4) Для итераций Python предлагает стандартный оператор while и 
очень мощный оператор for.  

5) Операторы выбора позволяют программистам задавать вопросы 
и выполнять различные действия, основываясь на ответе. 

6) Большинство языков программирования предоставляют две 
версии полезных конструкций: ifelse и if. Простой пример 
бинарного использования оператора ifelse: 

if n<0: 

   print("Sorry, value is negative") 

else: 

   print(math.sqrt(n)) 

7)  Поскольку большинство синтаксических конструкций Perl 
основаны на языке С, то для программистов, знающих языки C, 
C++, C#, Java, JavaScript, Python или PHP, синтаксис Perl будет 
очень знакомым.  

8) В некоторых случаях (например, при записи атрибутов файла в 
Unix) нагляднее изобразить числа в восьмеричной системе 
счисления.  

9) Весьма удобно, что преобразования между строками и числами 
выполняются автоматически в зависимости от контекста 
выражения, в котором они используются.  

10) В языке Perl для уточнения смысла языковых конструкций 
часто используется понятие контекста, под которым понимается 
программное окружение элемента языка (переменной, 
подпрограммы и так далее), определяющее его использование.  

 



 

UNIT 9.  Web – Development. Types of Web – development 
-------------------------------------------------------------------------------- 

 
Learning objectives 
 to acquire basic knowledge about web development and its types 
 to consider the difference between  Web development and web 

design 
 

Key words and phrases. Give Russian equivalents and remember the 
meanings of the key words and phrases used in the text 
 

Intranet; functionality; content management systems (CMS); plain 
text; Web content development; client liaison; network security 
configuration; Agile methodologies; front-end developer; back-end 
developer; full-stack developer; database technology; layout; fonts; to 
run smoothly; drop-down menu; scrollbars; checkout function; User 
Experience Design; User Interface Design; visual design;  to be 
broken down into; relational database management system 
(RDBMS). 

 
Read the following text and do the exercises given after it 

 

 
Web development  is the process of building websites and 

applications for the internet, or for a private network known as an intranet. 
Web development is not concerned with the design of a website; rather, 
it’s all about the coding and programming that powers the website’s 
functionality. 

From the most simple, static web pages to social media platforms and 
apps, from e-commerce websites to content management systems 



(CMS) - all the tools we use via the internet on a daily basis have 
been built by developers. 

Web development can range from developing a simple single static 
page of plain text to complex web applications, electronic businesses, and 
social network services. A more comprehensive list of tasks to which Web 
development commonly refers, may include Web engineering, Web 
design, Web content development, client liaison, client-side/server-side 
scripting, Web server and network security configuration, and e-commerce 
development. 

For larger organizations and businesses, Web development teams can 
consist of hundreds of people (Web developers) and follow standard 
methods like Agile methodologies while developing Web sites. Web 
development may be a collaborative effort between departments rather 
than the domain of a designated department.  

There are three kinds of Web developer specialization: front-end 
developer, back-end developer, and full-stack developer. Front-end 
developers are responsible for behavior and visuals that run in the user 
browser, while back-end developers deal with the servers.  

Types of web development 
Web development can be broken down into three layers: client-side 

coding (frontend), server-side coding (backend) and database technology. 
Client-side 

Client-side scripting, or frontend development, refers to everything 
that the end user experiences directly. Client-side code executes in a web 
browser and directly relates to what people see when they visit a website. 
Things like layout, fonts, colours, menus and contact forms are all driven 
by the frontend. 
Server-side 

Server-side scripting, or backend development, is all about what goes 
on behind the scenes. The backend is essentially the part of a website that 
the user doesn’t actually see. It is responsible for storing and organizing 
data, and ensuring that everything on the client-side runs smoothly. It does 
this by communicating with the front-end. Whenever something happens 
on the client-side - say, a user fills out a form - the browser sends 
a request to the server-side. The server-side “responds” with 
relevant information in the form of frontend code that the browser 
can then interpret and display. 



Database technology 
Websites also rely on database technology. The database contains all 

the files and content that are necessary for a website to function, storing it 
in such a way that makes it easy to retrieve, organize, edit, and save. The 
database runs on a server, and most websites typically use some form of 
relational database management system (RDBMS). 

To summarize: the frontend, backend, and database technology all work 
together to build and run a fully functional website or application, and 
these three layers form the foundation of web development. 

FRONTEND 
DEVELOPERS 

BACKEND 
DEVELOPERS 

FULL STACK 
DEVELOPERS 

 Code the fronted of
a website; i.e. the
part that the user
sees and interacts
with.

 Bring the web
designer’s designs
to life using HTML,
JavaScript and CSS.

 Ensure responsive
design.

 Work behind-the-
scenes, building and
maintaining the
technology needed
to power the
frontend.

 Ensure that
everything the
frontend developer
builds is fully
functional.

 Create and manage
the database.

 Experts in both
frontend and
backend
development.

 Guide on strategy
and best practices.

 Well –versed in both
business logic and
user experience.

Fig. 10. What does a web developer do? 

The difference between web development and web design 
Just like with software engineering, you might also hear the terms 

“web development” and “web design” used interchangeably, but these are 
two very different things. 

Imagine a web designer and web developer working together to build 
a car: the developer would take care of all the functional components, like 
the engine, the wheels and the gears, while the designer would 
be responsible for both the visual aspects - how the car looks, the 
layout of the dashboard, the design of the seats - and for the user 
experience provided by the car, so whether or not it’s a smooth drive. 



 

Web designers design how the website looks and feels. They model 
the layout of the website, making sure it’s logical, user-friendly and 
pleasant to use. They consider all the different visual elements: what color 
schemes and fonts will be used? What buttons, drop-down menus and 
scrollbars should be included, and where? Web design also considers the 
information architecture of the website, establishing what content will be 
included and where it should be placed. 

Web design is an extremely broad field, and will often be broken 
down into more specific roles such as User Experience Design, User 
Interface Design, and Information Architecture. 

It is the web developer’s job to take this design and develop it into a 
live, fully functional website. A frontend developer takes the visual design 
as provided by the web designer and builds it using coding languages such 
as HTML, CSS and JavaScript. A backend developer builds the more 
advanced functionality of the site, such as the checkout function on an e-
commerce site. 

In short, a web designer is the architect, while the web developer is 
the builder or engineer.  

[https://en.wikipedia.org/wiki/Web_development] 
[https://careerfoundry.com/en/blog/web-development/] 

 
1. Text-based Assignments 

 
1.1. Give English equivalents of the following words and word 

combinations: 
 
Создавать вебсайт, статическая веб-страница (страница, которая 
создана заранее и хранится для последующей отправки клиентам), 
инструмент, сложные веб приложения, перечень задач, исполнение 
скриптов на сервере, поддержание связей с клиентами, совместные 
усилия, ответственный отдел, разработчик пользовательских 
интерфейсов, разработчик полного цикла, шрифтовой комплект, 
посылать запрос, извлекать, взаимозаменяемо, раскрывать падающее 
меню, выполняться на сервере, полагаться на  что-л., код клиентской 
стороны. 
 
 
 
 



 

1.2. Match the following synonyms from the text 
 
1.   to save a) of the sight or vision 
2.  complex b) outline 
3.  to execute c) to prepare, to supply 
4.  design d) complicated, composed of several 

elements 
5. foundation e) constituent 
6. to provide f) basis 
7. to designate g) to appoint, to assign 
8. component h) to keep, to preserve 
9. visual i) project, scheme 
10. configuration j) to accomplish 
 

1.3. Match the following words and phrases  from the text with their 
meanings 

 
1. Backend a) a collection of interlinked web pages on 

the World Wide Web 
2. domain b) all of the behind-the-scenes digital 

operations that it takes to keep the front 
end of a website running, such as the 
coding, style, and plugins 

3. Web designer c) the address for a website as entered into 
the browser 

4. website d) the part of the website or app that the 
user sees. If the back end of your website 
is everything behind-the-scenes, this is 
what happens onstage 

5. frontend e)  system software for creating and 
managing databases that makes it possible 
for end users to create, protect, read, 
update and delete data in a database 

6. database management 
system  

f) an IT professional who is responsible for 
designing the layout, visual appearance 
and the usability of a website 

 
 



 

1.4. Read the text again and decide if the following statements are true 
or false. 

 
1) Web development  is the process of building websites and 

applications for a private network. 
2) Web development can range from developing a simple single static 

page of plain text to complex web applications, electronic businesses, 
and social network services. 

3) There are two kinds of Web developer specialization: front-end 
developer and back-end developer. 

4) The backend is not very actual because the user doesn’t actually see 
it. 

5) Web design is an extremely broad field. 
6) Backend developers ensure that everything the frontend developer 

builds is fully functional. 
7) A full-stack developer builds the more advanced functionality of the 

site, such as the checkout function on an e-commerce site. 
8) Sometimes Websites do not rely on database technology. 

 
1.5. Answer the following questions on the text 

 
1) What does a full-stack developer do?  
2) What is  a backend developer responsible for?  
3) What does a frontend developer do? 
4) Can you name any types of web development? 
5) What is the difference between web development and web design? 
6) How many people can Web development team consist of? 
7) What tasks does Web development include? 

 
 
 
 
 
 
 
 
 
 



2. Focus on Grammar

2.1. Study the table of Participle I and  Participle II 

Вид (Active) (Passive)  

Present Participle 
Simple 

developing -разрабатывающий; 
разрабатывая (вообще) While 
developing his first website  he can  
make some mistakes. 

being developed - 
разрабатываемый; будучи 
разработан  (вообще) 

Present Participle 
Perfect 

having III having  been III
having developed - разработав, 
(уже, до чего-то)
Having developed  the program our 
company can offer its maintenance. 

having been developed –
 (уже) был разработан 

Participle II 
(Past Participle) 

-------- 
- III

developed – разработанный 

2.2. Read and translate the sentences. Comment on the functions of 
Participle I, II 

1) Software engineering is the discipline that aims to provide methods
and procedures for developing software systems.

2) Еxtensive simulation and prototyping are sometimes used to capture
and analyze the system requirements concerned with human
interaction.

3) Researchers in the Cockrell School of Engineering at The University
of Texas have developed a new, open-source computer programming
framework that could make the web significantly more energy
efficient, allowing people to save more battery power while browsing
on mobile devices.

4) Having heard the gift of the report, Mr Smith did not dispute it.
5) Turning off his computer, he went out to the terrace.
6) He entered, puzzled but interested.
7) At last she heard her name called.
8) Mobile device users spend nearly two-thirds of their time browsing

the web.
9) And each answer made was written down quickly upon the sheets of

paper.



 

 

    2.3. Choose the right variant 
 

1) Have you had this article ______? 
a) typed                   b) typing                  c) type 

2) We shall not be able to catch the train______ at seven? 
a) left                      b)leaving                 c) having been left 

3) The letter _____ yesterday was not welcome. 
a) receiving           b) having received        c) received 

4) ______ his report, the clerk started writing down the latest figures. 
a) finished             b) being finished           c) having finished 

5) I won’t be able to go anywhere tomorrow as I’ll have my new 
furniture ________. 
a) delivering                b) being delivered                c) delivered 

6) _______ articles for her course paper, she began ____ money as a 
journalist while she was attending college.  
a) writing, earning; b) having written, earn; c) having written, to earn 

7) She turned to me for help,  _________ how to deal with the problem. 
a) not having known      b) not being known      c) not knowing 

8) Alice didn't like her computer classes; she thought they were _____ . 
a) bored                        b) being boring             c) boring 

 
3. Discussion  

 
3.1. Look at some websites. Make notes on the differences in design 
between them. Make a report about navigation bars, the categories and 
animations they use. What design features can you notice? 

3.2. Discuss the following questions: 

1) Why do people have personal websites?  
2) Have you ever visited anyone’s personal home page? What was it 

like? Why do companies have websites?  
3) What is a difference between a website and a webpage?  

 

 

 

 



 

4. Additional reading 
 

4.1. Read and translate the text  about other development tools 

Other web development tools 
 

Web development tools (often called devtools or inspect element) 
allow web developers to test and debug their code. They are different from 
website builders and integrated development environments (IDEs) in that 
they do not assist in the direct creation of a webpage, rather they are tools 
used for testing the user interface of a website or web application. 

Web development tools come as browser add-ons or built-in features 
in web browsers. Most popular web browsers, such as Google Chrome, 
Firefox, Internet Explorer, Safari, Microsoft Edge and Opera, have built-in 
tools to help web developers, and many additional add-ons can be found in 
their respective plugin download centers. 

Web development tools allow developers to work with a variety of 
web technologies, including HTML, CSS, the DOM, JavaScript, and other 
components that are handled by the web browser. Due to increasing 
demand from web browsers to do more, popular web browsers have 
included more features geared for developers.  

Web developers will also use a text editor, such as Atom, Sublime or 
Visual Studio Code, to write their code; a web browser, such as Chrome or 
Firefox; and an extremely crucial tool: Git! 

Git is a version control system where developers can store and 
manage their code. As a web developer, it’s inevitable that you’ll make 
constant changes to your code, so a tool like Git that enables you to track 
these changes and reverse them if necessary is extremely valuable. Git also 
makes it easier to work with other teams and to manage multiple projects 
at once. Git has become such a staple in the world of web development 
that it’s now considered really bad practice not to use it. 

Another extremely popular tool is GitHub, a cloud interface for Git. 
While we explain more about what it is and how to use it in our GitHub 
guide, essentially this tool offers all the version control functionality of 
Git, but also comes with its own features such as bug tracking, task 
management and project wikis.  

GitHub not only hosts repositories; it also provides developers with a 
comprehensive toolset, making it easier to follow best practices for coding. 



 

 

It is considered the place to be for open-source projects, and also provides 
a platform for web developers to showcase their skills. 

Wouldn’t it be great if you could edit your HTML and CSS in real-
time, or debug your JavaScript, all while viewing a thorough performance 
analysis of your website? 

Google’s built-in Chrome Developer Tools let you do just that. 
Bundled and available in both Chrome and Safari, they allow developers 
access into the internals of their web application. On top of this, a palette 
of network tools can help optimize your loading flows, while a timeline 
gives you a deeper understanding of what the browser is doing at any 
given moment. 

Google release an update every six weeks–so check out their website 
as well as the Google Developers YouTube channel to keep your skills up-
to-date. (2500) 

 
4.2. Write a short summary of the text for additional reading 
 
4.3. Give a short explanation of the terms  ‘Web development’ and ‘Web 
development tools’ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

UNIT 10. Some Basic Elements of a Web Page 
-------------------------------------------------------------------------------- 
 
Learning objectives 
 to review the essential elements of a web page 
 to understand what impact each element has and how it contributes to 

the general user experience 
 to learn some computer terms used in web page development 

 
Key words and phrases. Give Russian equivalents and remember the 
meanings of the key words and phrases used in the text 
 

Header, to scroll the page, website layout, trial version, call-to-action 
button, to hide, hamburger menu, sticky header, two-layer navigation, 
brand identity, to catch attention, hero section, to grab attention, 
footer, slider, carousel, internal search, the search query, shortcut, 
misinterpretation, lower bounce rate, slimmer, to get aware of, a 
search box, logo of the company, to apply a technique, website 
content. 

 
Read the following text and do the exercises given after it 

 
Header is the upper (top) part of the webpage. Being the area people 

see before scrolling the page in their first seconds on the website, the 
header is an element of strategic importance. It is expected from the header 
to provide the core navigation around the website so that users could scan 
it in split seconds and jump to the main pages that can help them. Headers 
are also referred to as site menus and positioned as an element of primary 
navigation in the website layout.  Headers may include a bunch of 
meaningful layout elements, for example: 

 basic elements of brand identity, usually a logo 
 call-to-action button 
 links to basic categories of website content 
 links to the social networks 
 basic contact information (telephone number, e-mail address, 

etc.) 
 switcher of the languages in case of the multilingual interface 



 

 search field 
 subscription field or button 
 links to interaction with the product such as trial version, 

downloading from the AppStore, etc. 
What makes a header a vital element contributing to web usability is 

the fact that it is placed in the most scannable zone of a web page. 
Whatever is the scanning pattern users stick to on a website, it starts from 
the top part of the page, scanned from left to right for languages using the 
same reading and writing pattern. Some of the popular design practices for 
web headers include: 

 hamburger menu: hiding the set of links to different pages or 
sections behind the hamburger button called so as it consists of 
horizontal lines looking like a typical bread-meat-bread 
hamburger. 

 sticky header: header that doesn’t hide away but sticks to the 
top part of the page when users are scrolling the page 
down. This way core navigation area is available at any point of 
interaction, which can be helpful in terms of content-heavy 
pages with long scrolling. 

 two-layer navigation: a sort of double set of navigation sites in 
the header to separate two different routes of navigation that are 
both important for web usability. 

One more widely-used pattern for website headers is making a logo 
clickable and opening or refreshing the home page after it’s clicked. If you 
are interested in how it works, visit https://blog.tubikstudio.com/anatomy-
of-web-page 

A call-to-action (CTA) button is an element of a user interface aimed 
at encouraging a user to take a certain action. This action presents a 
conversion for a particular page or screen (for example, buy, contact, 
subscribe, etc.). In other words, it turns a passive user into an active one. 
This type of button differs from all the other buttons on the page or screen 
due to its engaging nature: it has to catch attention and stimulate users to 
do the required action. 

Effective call-to-action buttons are easy to notice; designers 
intentionally create them so that website visitors could see them in split 
seconds and respond. That’s why they are usually bold buttons containing 
microcopy with a particular call to action (e.g., “Learn more” or “Buy it 



 

now”), w
to do it. 

He
containi
slider, c
visitors’
is that t
allows f
with the

Fo
marks it
the foote
be intere

 

which ex
 

ero secti
ing the e
catchy p
’ attentio
the visua
for settin
e users, en
ooter is 
ts end. B
er provid
ested in f
 brand

or pro
 links 

page,
etc. 

 credit
 conta
 links 
 testim
 certif
 subsc

 

xplains th

ion is the
lement th

piece of 
on and tra
al hook 

ng the qu
ngaging 
the lowe

Being ano
des the a
finding. F
d identity
oduct 
to user 

, Privacy

ts to web
act forms
to comp

monials a
fication s
cription f

he main a

e above-
hat prese
typogra

ansfers a
in the h

uick visua
them to 
er (botto
other com

additional
Footers c
y signs, u

support 
y Policy,

bsite crea
 and info
any or pr

and badge
igns 

field or b

 

action fo

-the-fold 
ents the s
aphy, vid
a needed 
hero secti
al, emoti
scroll or 

om) part 
mmon zo
l field fo
can inclu
usually th

sections
, Terms 

ators 
ormation
roduct ac
es 

utton. 

or this pa

(pre-scr
strong vi
deo, or 
message

ion insta
ional, an
push the
of the w

one of gl
or useful 
ude: 
he name 

, for exa
and Co

ccounts i

ge and e

oll area 
isual hoo
anything

e to them
antly gra
d inform
e buttons 
web pag
lobal we
links and

and logo

ample, FA
nditions,

n social n

 

encourage

of the w
ok: a hero
g else a
m. The m
abs atten

mative co
s to learn 
ge which
ebsite nav
d data us

o of the c

AQ page
, Suppor

network

es a user

web page
o image,

attracting
main idea

tion and
nnection
more. 

h usually
vigation,
sers may

company

e, About
rt Team,

s 

r 

e 
, 
g 
a 
d 
n 

y 
, 
y 

y 

t 
, 



 

Slider is an interactive element that applies a technique of a 
slideshow or carousel to present different products, offers, etc. It is 
especially popular as a part of e-commerce and business websites to 
present a sort of gallery of products or services. 

Internal search is a functionality that enables a visitor to browse the 
content inside the website and shows it according to the search query. 
Tuned correctly, it shows the relevant content, and this way provides the 
shortcut to what the user needs. Thus, the internal search saves the user’s 
time and effort, amplifies usability and desirability of the digital product, 
helps retain users, and increases conversion rates. The interactive element 
responsible for the internal search in the user interface is a search field, 
also called a search box or search bar: it enables a user to type in the 
search query and, this way find the pieces of content that are needed. 

If your website is made of 50+ pages, it’s high time you considered 
applying the internal search. Well-designed and easily found search field 
enables the user to jump to the necessary point without browsing through 
the numerous pages and menus. In case you have a single-page website, if 
your app or website is concise and not heavily packed with content, the 
internal search is not needed. One more example is also here 
https://blog.tubikstudio.com/anatomy-of-web-page/ 

Breadcrumbs are navigation elements used to support users in a 
journey around the website: they get aware of where they are on the 
website and can get used to the website structure more easily. So, 
breadcrumbs present the secondary level of navigation and increase 
website usability in case it has lots of pages. 

Some of the benefits of breadcrumbs are: 
 increased findability 
 fewer clicks needed 
 effective use of screen space line with plain-looking text elements 

that don’t need much space 
 no misinterpretation 
 lower bounce rate: breadcrumbs are a great support for first-time 

visitors or people that have no everyday experience of dealing with 
complex websites. 
As well as with internal website search, breadcrumbs are helpful in 

cases when the website has multiple pages and a complex hierarchy 
consisting of multiple layers. Breadcrumbs are common – and expected by 
users – in big e-commerce websites and platforms, media and news 



 

websites

 
1.1. Gi

co
 

Шапка 
сайте; ш
горизон
меню); 
страниц
природа
визуаль
(навига
показат
поиск. 
 
1.2. Ma

 
1. Web 

2.  Layo

s, blogs,

[A

ive Eng
mbinatio

веб сай
шаблон; 
нтальных
страниц
цами; о
а; наме
ьный кр
ционная
тель «не

Match the f

page 

out 

, and m

Abridged f

1

glish equ
ons: 

йта; мгн
скрыват
х линий
цы с бол
обновлен
еренно; 
рючок; 
я цепочк
енужных

following

a) u
c

b) a
a
n
y
g

magazines

from  https

1. Text-b

uivalents

овение 
ть ссылк
й, при н
ьшим со
ние нач
вверху

слайдер
ка); поис
х просм

g  compu

usually th
company
anything 
action. U
now', 'ca
you're loo
give it a t

s coverin

s://blog.tu

 
based As

s of th

ока; наб
ки; меню
нажати
одержан
чальной
у стран
р; подва
сковая ст
мотров»

uter term

he top a
y logo, m

on a web
Usually, 
all us tod
oking fo
try? Start

ng a wid

 
ubikstudio.

ssignmen

e follow

бор элем
ю «гамб
ии на к
нием; удо
й стран
ницы; п
ал (фут
трока; ко

»; линия

ms with th

area of a 
main navig

bsite that
this is s

day', 'ord
r? Call u
t a free tr

de range

.com/anato

nts 

wing wo

ментов; 
ургер» (
которую
обство п
ицы; п
привлек
тер); хл
оэффици
я экран

heir defin

website
gation, ph
t asks the
somethin

der now', 
us now on
rial now'

e of top

tomy-of-w

ords an

 «залип
(иконка 
ю откры
пользова
привлека
кать вн
лебные 
иент кон
на; внут

nitions 

, contain
hone num
e user to 

ng such 
'don't se

n xxx', 'r
. 

pics, etc.

web-page/]

nd word

пать» на
из трех
ывается
ания веб
ательная
нимание;
крошки
нверсии;
тренний

ning the 
mber. 
take an 
as 'buy 
ee what 
ready to 

.

] 

d 

а 
х 
я 
б 
я 
; 
и 
; 
й 



 

 

3.  Header c) a single document, generally written in 
HTML/XHTML, meant to be viewed in a web 
browser. In many cases, web pages also include 
other coding and programming (such as PHP, 
Ruby on Rails, or ASP). 

4. Footer d) describes what is on a page and where, the page 
structure. 

5. Breadcrumbs e) usually, the bottom area of a webpage, consisting 
of links to internal pages including legal 
information etc, Copywrite info etc. 

6. A Call-to-
Action 

f) the small links under the Header that show the 
containing sections of a given page, usually 
displayed as 'home > category > subcategory > 
current page'. These exist to help users navigate 
and understand site structure. 

 
1.3. Answer the following questions on the text 
 

1) What does header include? What makes a header a vital element 
contributing to web usability? 

2) Is footer the lower part or the top part of the web page? 
3) What is the role of slider? 
4) Which principle? "The ease of use / how user friendly the website 

is". Accessibility, Usability, Clarity or Content? 
5) What is internal search enable a visitor to do? 
6) Do breadcrumbs present the primary or the secondary level of 

navigation? 
7) Why does a call-to-action button differ from all the  other buttons? 

 
1.4. Read the text again and decide if the following statements are true or 

false 
 1) A call-to-action button  is an element of strategic importance.  

2) Headers are also referred to as site menus and positioned as an 
element of primary navigation in the website layout.   

3) Some of the popular design practices for web headers include: 
hamburger menu, sticky header and internal search. 

4) Two-layer navigation is a sort of double set of navigation sites in the 
header to separate two different routes of navigation. 



 

5) A call-to-action (CTA) button turns a passive user into an active one. 
6) The main idea is that the visual hook in the hero section instantly 

grabs attention and allows for setting the quick visual, emotional, and 
informative connection with the users. 

7) Footers can include: call-to-action button, links to basic categories of 
website content, links to the social networks, basic contact 
information (telephone number, e-mail address, etc.). 

8) The internal search amplifies usability and desirability of the digital 
product, helps retain users, and increases conversion rates. But it 
takes a lot of time. 

9) Breadcrumbs are helpful in cases when the website has multiple 
pages and a complex hierarchy consisting of multiple layers. 
 

2. Focus on Grammar 
 

2.1. Revise the following constructions with Participles 
 

1. The Objective - with - 
the - Participle I 
Construction 
(Complex Object with 
the Participle) 

употребляется тогда, когда 
говорящий хочет подчерк-
нуть, что действие, выра-
женное причастием, на 
завершено и протекает в 
момент речи. 

I saw her working on 
her project. 

2. The Subjective 
Participial Construction 
(Complex Subject) 

употребляется  с глагола-
ми чувственного и 
умственного восприятия в 
страдательном залоге. 
Конструкция характерна 
для письменной речи. 

Jane was found working 
on her project. 

3. The  Nominative 
Absolute Participial 
Construction 

выражает действие, не 
связанное с действием, 
обозначенным глаголом-
сказуемым предложения. 
Сам оборот состоит из 
существительного в общем 
падеже (реже местоимения 
в именительном падеже) и 
причастия. Этот оборот 
характерен для письменной 
речи . 

The article having been 
translated, the student 
showed it to the teacher. 
После того как (когда) 
статья была переве-
дена, студент показал 
её преподавателю. 
(обстоятельство 
времени) 
 



 

2.2. Point out the complex object and complex subject with the participle 
constructions. Translate the following sentences into Russian 
 

1) I heard him moving about, and presently he was back a new printer. 
2) Walking into the center of the great empty office, he stood still. 
3) Lifting the telephone, she answered, ‘Yes?’ 
4) She liked to watch him doing things, printing, coding, and designing. 
5) Не was always late оn principle, his principle being that punctuality 

is the  thief of time. 
6) You seem wanting to get out of it. 
7) Having been checked our papers, she didn’t feel fit to work. 
8) I don’t like people coming too close. 
9) The rule having been answered, we passed on analyzing the 

sentences. 
10) There was no money, Hilbert having used all the possessed. 
11) Nobody having anything more to say, he went out. 
12) The task was understood as being too difficult for the students. 
13) Christian seemed enduring a profound spiritual crisis. 
14) We watched the plane landing. 

 
2.3. Make up your own sentences with Participle 1 as parenthesis 

(independent element).  
Participle 1 is the headword of the phrase, the meaning of which is a 
comment on the whole sentence or some part of it. 
Allowing for – делая поправку на 
Generally speaking – вообще говоря 
Judging by/ from – судя по 
Joking aside – кроме шуток, шутки в сторону 
Leaning aside – не говоря о  
Putting it mildly – мягко выражаясь 
Taking into consideration – принимая во внимание 
Talking/ speaking of – к вопросу о, говоря о 
 
E.g. Generally speaking it’s you duty to discuss all the necessary details 
with our customer. 
 
 
 



 

3. Discussion 
 
3.1. Watch this video and  give your comments on the top 5 websites 

https://www.youtube.com/watch?v=AmHEfTSBXiY&ab_channel=Fl
ux 
 

3.2. Discuss the following questions  
 

1) What is good Web design? What is important in Web design? 
2) Is Web Design graphic design? 
3) How do I start a website? 
4) Is HTML and CSS enough to create a website? 
5) What are the different types of website layouts? 

 
3.3. Explain the following terms in English 
 
Scrolling, trial version, multilingual interface, hero section, e-commerce, 
breadcrumbs, conversion rates, search bar, logo. 
 
3.4. Choose your answers to the questions and discuss them with your 

partner. If you are not sure you can find the necessary information in 
the Internet 

Web pages and web apps test questions 

1) What is a dynamic website? 
A) A website that has interactive element 
B) A website that has no form of interactivity 
C) A website that is very large 

2) What web development languages are most websites written in? 
A) High level languages like C++ and Java 
B) HTML and CSS with some scripting languages like JavaScript 

and PHP 
C) Pseudo code 

3) What is a mashup (приложение, комбинирующее в себе контент 
с различных источников)? 
A) Two or more websites that have been joined together 
B) A website or application which mixes code from different external 

sources 



 

C) A website that isn't working properly 
4) What are cookies? 

A)Viruses that are downloaded onto your computer 
B) Programs that are stored on your computer that tell a website if 

you have been to that site before 
C) Text files that are stored on your computer that tell a website if 

you have been to that site before 
5) What identifies the kind of device that is accessing the website? 

A) The server 
B) A protocol 
C) The web browser 

6) What is the difference between the client-side scripts and the Server-
Style Scripts? 
A) Client-side scripts are programs that are processed by the web 

browser and server-style scripts are processed by the web server 
B) Client-side scripts are programs that are processed by the web 

server and server-style scripts are processed by the web browser 
C) Client-side scripts process the static parts of the web site and 

server-style scripts process the dynamic parts of the web site 
7) How do search engines rank the website result they receive? 

A) Websites appear higher up a list of results purely based on how 
many hits have occurred on that website altogether, since it was 
created 

B) Websites appear higher up a list of search results because they 
have paid the web browser to be ranked higher 

C) Websites appear higher up a list of results because they are judged 
to be more important by the search algorithm. This is measured by 
the popularity of a site and how many connections it has with 
other websites 

8) What is cloud computing? 
A) Cloud computing is storing and using services online, rather than 

storing them locally on a device such as a hard drive 
B) Cloud computing is accessing your home computer over the 

internet 
C) Cloud computing is accessing stored data online using only 

mobile devices 
 
 



 

4. Additional reading 
 

4.1. Read and translate the text  about other elements of  a Web Page 
 
The menu is one of the core navigation elements in user interfaces. 

It is a graphical control that presents the options of interactions with the 
interface. Basically, it can be the list of commands – in this case, options 
will be presented with verbs marking possible actions like, for example, 
“save,” “delete,” “buy,” “send,” etc. A menu can also present the 
categories along which the content is organized in the given interface, and 
this can be the high time for using nouns marking them. 

Menus can have different locations in the interface (side menus, 
header menus, footer menus, etc.) and different ways of appearance and 
interaction (drop-down menus, drop-up menus, sliding menus, etc.)  

Some popular types found on diverse websites are: 
Classic horizontal menu: the most common and well-recognized type 

of menu which presents the core navigation organized as a horizontal line 
in the website header, mentioned above 

Sidebar menu: quite a classic type, presents a vertical list of options 
sticking to the left or right side of the web page 

Dropdown menu: a more complex type of menu for content-heavy 
websites; here, the list of additional options opens below the primary one 
when it’s clicked or hovered. Another similar option is the dropup menu, 
when the list opens up, not down, but the essence is the same. 

Megamenu: that’s the complex expandable menu in which the big list 
of multiple choices is presented in a two-dimensional dropdown layout; 
this approach is effective for cases with a vast number of options. 

Hamburger menu: when the hamburger button (typically marked 
with three horizontal lines) is clicked, the menu expands. This option saves 
space and is often applied to mobile versions of websites. One more 
example is also here https://blog.tubikstudio.com/anatomy-of-web-page/ 

Form is an interactive element that allows users to send information 
to the system or server. In a nutshell, it is a digital version of any real 
paper form we have to fill in to provide someone with the arranged 
information; however, digital forms can have more options and 
functionality to make this process even more smooth, clear, and user-
friendly. As it is a traditional and well-recognized pattern of collecting the 
data, users deal with forms quite often in their digital lives, starting from 



 

the proc
payment

 

As
and the 
the simp
effort sh
the navi
minimiz

Ca
visualize
way. Ca
a separa
content 
catalog 
to a shop

 

cess of r
ts, sendin

s forms p
digital p
pler the 
hould be 
igation o
zed.  
ards, also
e homog
ards are u
ate piece
about a 
page can
pping ca

registrati
ng feedb

present th
product, t

UI elem
put into 

of the fo

o called 
geneous 
usually o
e in this
particula
n include
rt or savi

on, addi
ack, subs

he actual 
they have

ment shou
it, right?
rm intui

tiles, ar
data or

organized
s system
ar item. F
e an imag
ing to the

ing perso
scribing 

point of
e to be s
uld be, th
? Make th
itive, and

re layout
r content
d in a sor

m. Cards 
For exam
ge, a title
e wishlis

onal or f
to a new

f commun
uper sim
he more 
he logic o
d the num

t elemen
t in a sc
rt of grid

can com
mple, a pr
e, basic 

st, etc. 

financial
wsletter, e

 
nication 

mple and 
designe

of data in
mber of 

nts that h
cannable 
, but eac
mbine di
roduct pr
functiona

 

l details,
etc. 

between
easy to u

ers’ thoug
nput thou
required

help arra
 and eas

ch card lo
ifferent 
review c
ality of a

making

n the user
use. And
ghts and
ught-out,
d actions

ange and
sy-to-use
ooks like
types of

card on a
adding it

g 

r 
d 
d 
, 
s 

d 
e 
e 
f 
a 
t 



 

Art Institute blog uses ultra-minimalistic cards, separated only by 
negative space but organized clearly to be distinguished. 

Video is not a really basic part of a web page, but with the progress 
of web development solutions and technical abilities, we can find it more 
and more often on the website of different kinds these days. A catchy 
video crafted with an understanding of the target audience is a tool 
attracting customers’ attention as well as a well-checked method of 
informing them quickly and brightly. Video content activates several 
channels of perception – audio, visual, motion – simultaneously, and 
usually does that wrapped in telling a story. Such a combination of factors 
often makes a video presentation strong, emotional, and memorable. 

We can come across many other types of videos that help users 
quickly catch the idea of a product, set the atmosphere, send the needed 
message, engage in trying the service, demonstrate how the tool, app, or 
software works, share feedback from users, and so on, and so forth. 
However, there are essential points to consider, such as loading time, 
contrast issue, responsiveness, and other pitfalls that can spoil user 
experience in the case of video integration into a web page. 

Favicon, also known as URL icon or bookmark icon, is a special 
type of symbol representing the product or brand in the URL-line of the 
browser and in the bookmark tab. It allows users to get a quick visual 
connection with it while they are browsing. This interface element proved 
itself effective for productive website promotion and good recognizability 
of its visual identity. Being super small, it makes a great contribution to 
web usability. 

 
Tags 
That’s another element of secondary navigation level, often found in 

blogs and websites with plenty of homogenous content. Tag is presented 
with a keyword or phrase that enables users to jump directly to the items 



 

marked up with it. Tags are actually pieces of metadata that provide quick 
access to specific content categories, so they support navigation with the 
additional way of content classification. Moreover, tags are often the 
elements that users create by themselves, so they become an alternative to 
the names of categories that are fixed by the website and can’t be changed 
by users.                              [https://blog.tubikstudio.com/anatomy-of-web-page/] 
 

4.2. Work with a partner. Ask some questions to each other on the text 
about some other elements of a web Page 
 

4.3. Translate the following sentences into English 
 

1) User interface (UI) элементы – это части, которые дизайнеры 
используют для создания приложений или веб-сайтов.  

2) Они добавляют интерактивность в пользовательский интерфейс, 
предоставляя пользователю точки соприкосновения при 
навигации по ним. 

3) Хлебные крошки (навигационная цепочка, англ. Breadcrumbs) – 
это элемент навигации по сайту, который представляет собой 
путь от корня сайта, до текущей страницы, на которой  
в настоящий момент находится пользователь.  

4) Хлебные крошки обычно представляют собой полосу в верхней 
части страницы, обычно под шапкой сайта. 

5) Нотификации дают юзеру понять, что есть что-то новое, 
например, сообщение или какое-то системное уведомление. 

6) Следующей обязательной составляющей частью web-страницы 
являются Элементы навигации – гиперссылки, связывающие 
данный документ с другими разделами сайта.  

7) Элементы навигации могут быть выполнены в виде текстовых 
строк, графических объектов, то есть кнопок, либо активных 
компонентов. 

8) Если web-страница является стартовым документом, в нижней 
ее части также размещают счетчик посещений – небольшой 
сценарий, вызывающий установленный на сервере CGI-скрипт, 
который фиксирует каждое открытие документа в браузере 
пользователей, изменяя значение индикатора счетчика. 

9) Благодаря этому web-мастер без труда определит количество 
посетителей, навестивших его страничку в течение какого-либо 
времени.  



 

UNIT 11. Application Development and  Types of Application 
Development Methodologies 

-------------------------------------------------------------------------------- 
 

Learning objectives 
 to acquire basic knowledge about application development 
 to consider three categories most application development 

methodologies can be grouped into 
 to consider advantages and disadvantages of three methods in 

application development  
 

Key words and phrases. Give Russian equivalents and remember the 
meanings of the key words and phrases used in the text 
 

Application development, freelance developer, software development 
life-cycle (SDLC), to emerge; waterfall, to line out, sequence, 
prototype, to divert, to accommodate, meticulous, to train junior 
programmers, Rapid Application development (RAD), sprint, Agile 
project management, highly skilled, deadline; iterative,  to stick to, 
planned schedule, to suit the needs, to attach. 

 
Read the following text and do the exercises given after it 

 

 

Application development is the process of designing, building, and 
implementing software applications. It can be done by massive 
organizations with large teams working on projects, or by a single 
freelance developer. Application development defines the process of how 
the application is made, and generally follows a standard methodology. 



 

 

You must consider the size of the project, how specific the 
requirements are, how much the customer will want to change things, how 
large the development team is, how experienced the development team is, 
and the deadline for the project. 

Application development is closely linked with the software 
development life-cycle (SDLC). 

The basic stages of SDLC are: Planning, Analysis, Design, 
Construction, Testing, Implementation, Support. 

The way that application development teams have accomplished 
these seven tasks has changed a lot in the last few decades, and numerous 
types of application development methods have emerged. Each 
methodology must provide a solution for the seven stages of the SDLC. 

Most application development methodologies can be grouped into 
one of three categories: Waterfall, RAD, Agile. 

Waterfall 
The key words for the waterfall method of application development 

are planning and sequence. The entire project is mapped out in the 
planning and analysis stages. The customer comes with a very explicit list 
of features and functionalities for the application. Then, a project manager 
takes the whole process and maps it out amongst the team. 

This application development method is called waterfall because 
once you go down, you can’t go back up; everything flows downward. The 
development team works together over a set of time, building exactly what 
is lined out according to the specifications. After the architecture is 
designed, then only can the construction begin. The entire application is 
built, and then it is all tested to make sure that it is working properly. 
Then, it is shown to the customer and ready to be implemented. 

The waterfall method assumes that the project requirements are clear 
and the customer and project manager have a unified and clear vision 
about the end result. 

The advantage of the waterfall method is that it is very meticulous. 
It’s also a good application development method to use for big projects 
that need to have one unifying vision. The waterfall method is also a good 
way to train junior programmers on parts of development without having 
to turn an entire project to them. 

The disadvantages are that changes happen all the time. Even if the 
development team is able to build exactly what the customer originally 
wanted (which doesn’t always happen), the market, technology, or the 



 

organization may have changed so much that it is effectively useless and a 
waste of time. 

Rapid Application Development (RAD) Methodology 
In many ways, RAD was the opposite of the waterfall method. 
RAD is based mostly on prototypes, meaning that the goal is to 

produce a working version of the application as quickly as possible, and 
then to continuously iterate after that. The application development team 
and the customer work very closely with each other throughout the 
process. RAD teams are usually small and only involve experienced 
developers who are skilled in many disciplines. If a project needs to divert 
from the original plan, RAD should be able to accommodate that easily. 

 
Fig. 11. Rapid Application Development 

 
In the RAD model, as each iteration is completed, the product gets 

more and more refined. The early prototypes are often very rough, but give 
a picture of what can be. Each iteration then looks more like the finished 
product. 

RAD’s advantages are a quick and highly flexible team and a very 
close relationship with the customer. If changes are expected, RAD will be 
able to accommodate these much faster than waterfall. RAD is also never 
too attached to a prototype and is always willing to change it to suit the 
needs of the customer. 

However, RAD isn’t a perfect application development method. 
RAD requires highly skilled (and highly paid) programmers to work on a 
project that may change in complexity by the day. There’s also less 
adherence to deadlines and more of a focus on adding features, which can 
extend delivery dates. RAD requires a lot of input from customers who 
may not always be available or know what they need. Additionally, for 



 

 

some applications, having a prototype is not useful without seeing the 
entire product. 

 

Agile Methodology 
Agile application development is very similar to RAD, but also 

includes some changes to make it more suitable to larger projects. Agile is 
iterative, like RAD, but focuses on building features one at a time. Each 
feature is built in a methodical way in the team, but the customer is 
involved to see the features and sign off on them before the next feature is 
developed. 

Agile uses sprints, or set of time when a certain feature should be 
built, tested, and presented. It tries to incorporate the entire SDLC for a 
feature into each sprint. This, ideally, helps to stick to a planned schedule, 
but also allow for frequent reviews. 

Agile doesn’t focus on prototypes, but only presents completed work 
after the sprint is over. So while the customer is informed more often than 
waterfall, the customer only ever sees finished work, unlike RAD. 

Agile project management methodology is also more team or squad 
based. With RAD, you are working directly with a programmer. With 
Agile, the application development team will also include testers, UX 
designers, technical writers, and many others. 

[Abridged from https://kissflow.com/low-code/rad/types-of-application-
development-methodologies] 

 
1. Text-based Assignments 

 
1.1. Give English equivalents of the following words and word 

combinations: 
 

Внедрение программных приложений; внештатный разработчик; 
требования; стандартная методология; выполнить задачу; относить в 
одну из категорий; намечаться; подробный перечень; функции 
приложения; менеджер проекта; в соответствии со спецификациями; 
определенный период времени; пустая трата времени; быстрая 
разработка приложений; рабочая версия; заказчик; отклониться; 
привязываться к прототипу; в соответствии с  потребностями; 
ориентирована на группу; запланированный график; метод гибкой 
разработки приложений. 
 
 



1.2. Match the following  computer terms with their definitions 

1. RAD a) a linear, sequential approach to the software
development life cycle (SDLC) that is popular 
in software engineering and product development 

2. software testing b) a repeatable fixed time-box during which a
"Done" product of the highest possible value is 
created 

3. sprint c) a form of Agile software development
methodology that prioritizes rapid prototype 
releases and iterations.  

4. implement d) a method to check whether the actual software
product matches expected requirements and to 
ensure that software product is Defect free. It 
involves execution of software/system components 
using manual or automated tools to evaluate one or 
more properties of interest 

5. prototype f) to recognize and use an element of code or a
programming resource that is written into the 
program 

6. waterfall
method 

g) an original model, form or an instance that
serves as a basis for other processes. In software 
technology, this term is a working example 
through which a new model or a new version of an 
existing product can be derived 

1.3. Match the following synonyms from the text 
1. complexity a) detail, very careful
2. entire b) fitly, suitably
3. to suit c) smart, active, quick
4. to incorporate d) to correspond, to match
5. properly e) full, complete
6. management f) to unite, combine, mix, consolidate
7. agile g) administration, guidance
8. to assume
9. meticulous

h) complication, entanglement, involved
character

i) to suppose



 

1.4.  Answer the following questions on the text 
 

1) What factors are there those go into how application development 
is done? 

2) How many stages does software development life-cycle include? 
3) Why is one of the application development methods called 

waterfall? 
4) Is RAD based mostly on prototypes, isn’t it? Is it a perfect 

application development method? 
5) What does Agile application development use? Does it focus on 

prototypes? 
6) What is the goal of Rapid Application Development? 
 

1.5. Complete the following table using the information about advantages 
and disadvantages of different methods in application development. 
You can use some additional information from the Internet if 
necessary 
 

 Advantages Disadvantages 
Waterfall 1. Meticulous, good for 

big projects. 
2. … 

1. Changes happen all the 
time.  
2…. 

RAD methodology   
Agile methodology   

  
 

2. Focus on Grammar 
 
2.1. Study the following table and make up your own sentences with 
Gerunds used in different functions 
 
Functions of 
the Gerund 

Example Translation 

Subject Having a prototype is not useful 
without seeing the entire 
product. 

Иметь прототип бесполезно, 
если не видеть  весь 
продукт. 

Compound  
Predicate 

The negotiations are still far 
from being ended. 
We began discussing the needs 
of our customers . 

Переговоры еще отнюдь не 
закончены. 
Мы начали обсуждать 
потребности наших 
заказчиков. 



 

Object I remember having turned off my 
computer. 

Я помню, что выключил 
компьютер. 

Attribute The proposal for reducing the 
working hours is now being 
discussed. 

Предложение о сокращении 
рабочей недели сейчас 
обсуждается. 

Adverbial 
Modifier 

We cannot use the device 
without testing it. 

Мы не можем использовать 
этот прибор без его 
проверки. 

2.2. Read and translate the sentences. Comment on the functions of the  
Gerunds 

1) It's no use talking to the headmaster. 
2) Finding a parking space is really difficult in this part of the city. 
3) She has always dreamt of becoming a good programmer.  
4) You can’t learn without making mistakes.  
5) Solving such a problem is not an easy task. 
6) I suggest telephoning the hospitals before asking the police to look 

for him. 
7) She took a long time to get over losing her dog. 
8) Tom is proud of donating his free time to the charity. 
9) Agile is iterative, like RAD, but focuses on building features one at a 

time. 
 

2.3. Choose the right variant 
 

1) You must keep on _____ the computer until you understand how 
_____ all of the programs. 

a) practice, to use;     b) practicing, using;   c) practicing, to use 
2) Will you excuse me for _____ an obvious precaution? 
a) taking                    b) take                 c) to take 
3) I’ll never forget ______ my first entrance examination. It was a 

complete failure. 
a) to take              b) having been taken      c) taking 

4) If people delay _____ their bills, they only incur more and more 
interest charges. 
a) to pay             b) paying               c) to be paying 

5) We both sat in silence for some little time after ______ to this 
extraordinary story. 
a) listening           b) listen              c) having been listen 



 

 

6) I look forward to ________ you the next time I’m in town. I’ll be 
sure to let you  ______ ahead of time so that we can plan to get 
together. 
a) see, to know;        b) see, knowing;      c) seeing, know 

7) His ______ a bad mark did not surprise anybody. 
a) receiving                    b) being received              c) having received 

8) He finished _______ this file form the Internet. 
a) downloading       b) being downloaded         c) having downloaded 

 
3. Discussion 

 
3.1. Discuss the following questions concerning Application development 

 
1) Why is software testing important? 
2) How will your application make money? 
3) Web apps are relatively easy to maintain. Can you explain why it 

is so? 
4) Users interact with different web browsers, and as a result, the 

usage patterns and performance metrics used to create a product 
roadmap are more challenging to collect. Is it advantage or 
disadvantage for Web Apps? 

5) What should you look for in a development team? 
6) How much does it cost to develop an App? 

 
3.2. Prepare a one minute speech on the following topic and present it to 

the class 
 
‘The best ideas are of little use if they cannot be implemented. Good 
application design alone is not enough; efficient, high-quality 
development is also required’ 
  

3.3. Prepare a short report about one of the methods of application 
development 

 
 
 
 

 



 

4. Additional Reading 
 

4.1. Read and translate the following text about World Wide Web display 
languages 

 
HTML 

The World Wide Web is a system for displaying text, graphics, and 
audio retrieved over the Internet on a computer monitor. Each retrieval 
unit is known as a Web page, and such pages frequently contain  
“links” that allow related pages to be retrieved. 
HTML (hypertext markup language) is the markup language for encoding 
Web pages. It was designed by Tim Berners-Lee at the CERN nuclear 
physics laboratory in Switzerland during the 1980s and is defined by an 
SGML DTD. HTML markup tags specify document elements such as 
headings, paragraphs, and tables. They mark up a document for display by 
a computer program known as a Web browser. The browser interprets the 
tags, displaying the headings, paragraphs, and tables in a layout that is 
adapted to the screen size and fonts available to it. 

HTML documents also contain anchors, which are tags that specify 
links to other Web pages. An anchor has the form <A HREF= 
“http://www.britannica.com”> Encyclopædia Britannica</A>, where the 
quoted string is the URL (uniform resource locator) to which the link 
points (the Web “address”) and the text following it is what appears in a 
Web browser, underlined to show that it is a link to another page. What is 
displayed as a single page may also be formed from multiple URLs, some 
containing text and others graphics. 

 
XML 

HTML does not allow one to define new text elements; that is, it is 
not extensible. XML (extensible markup language) is a simplified form of 
SGML intended for documents that are published on the Web. Like 
SGML, XML uses DTDs to define document types and the meanings of 
tags used in them. XML adopts conventions that make it easy to parse, 
such as that document entities are marked by both a beginning and an 
ending tag, such as <BEGIN>…</BEGIN>. XML provides more kinds of 
hypertext links than HTML, such as bidirectional links and links relative to 
a document subsection. 

 



 

 

Web scripting 
Web pages marked up with HTML or XML are largely static 

documents. Web scripting can add information to a page as a reader uses it 
or let the reader enter information that may, for example, be passed on to 
the order department of an online business. CGI (common gateway 
interface) provides one mechanism; it transmits requests and responses 
between the reader’s Web browser and the Web server that provides the 
page. The CGI component on the server contains small programs 
called scripts that take information from the browser system or provide it 
for display. A simple script might ask the reader’s name, determine the 
Internet address of the system that the reader uses, and print a greeting. 
Scripts may be written in any programming language, but, because they 
are generally simple text-processing routines, scripting languages like 
PERL are particularly appropriate. 

Another approach is to use a language designed for Web scripts to be 
executed by the browser. JavaScript is one such language, designed by 
the Netscape Communications Corp., which may be used with both 
Netscape’s and Microsoft’s browsers. JavaScript is a simple language, 
quite different from Java. A JavaScript program may be embedded in a 
Web page with the HTML tag <script language=“JavaScript”>. JavaScript 
instructions following that tag will be executed by the browser when the 
page is selected. In order to speed up display of dynamic (interactive) 
pages, JavaScript is often combined with XML or some other language for 
exchanging information between the server and the client’s browser. In 
particular, the XMLHttpRequest command enables asynchronous data 
requests from the server without requiring the server to resend the entire 
Web page. This approach, or “philosophy,” of programming is called Ajax 
(asynchronous JavaScript and XML). 

VB Script is a subset of Visual Basic. Originally developed for 
Microsoft’s Office suite of programs, it was later used for Web scripting as 
well. Its capabilities are similar to those of JavaScript, and it may be 
embedded in HTML in the same fashion. 

Behind the use of such scripting languages for Web programming 
lies the idea of component programming, in which programs are 
constructed by combining independent previously written components 
without any further language processing. JavaScript and VB Script 
programs were designed as components that may be attached to Web 
browsers to control how they display information. 

   [https://www.britannica.com/technology/computer-programming-language] 



   
4.2. Ask five questions on the content of the text for additional reading 
 
4.3. Translate the following sentences  
 

1) Покупки в приложении, оплата подписки или премиум-версии, 
размещение рекламы, продажа данных – все эти способы 
монетизации можно использовать, даже если вы 
распространяете приложение не бесплатно. 

2) Внутренняя архитектура зависит от функционала мобильного 
приложения и выбранного способа обработки и хранения 
данных.  

3) Обычно мы составляем два списка – характеристик, которыми 
должно обладать приложение, и ключевых визуальных 
элементов. Они становятся фундаментом для всех будущих 
архитектурных работ. 

4) В конце каждого спринта обсуждайте его результаты с 
заинтересованными сторонами. 

5) Разработка мобильного приложения не заканчивается с его 
публикацией в сторах. Даже за умеренно популярными 
приложениями стоит целая история обновлений.  

6) В понятие разработки мобильных приложений для смартфонов, 
планшетов и прочих мобильных устройств входит написание 
программного кода с целью создания программ, которые будут 
работать на определенных мобильных платформах.  

7) На сегодняшний день существует 2 основные платформы 
мобильных операционных систем – Android и iOS, и менее 
популярные Windows Phone и Symbian). 

 
 

 
 
 
 
 
 
 



 

 

UNIT 12. Game Engine 
-------------------------------------------------------------------------------- 
 
Learning objectives: 

 to acquire basic knowledge about game engines and their types 
 to consider what game engines provide 

 
Key words and phrases. Give Russian equivalents and remember the 

meanings of the key words and phrases 
 

Game engine, software framework, to construct games, implementer, 
a suite of tools, a rendering engine, “middleware”, platform 
abstraction, a component-based architecture, to comprise, “graphics 
engine”, to become outdated, a game application, multiple platform, 
artificial intelligence, to simplify, to run on, a custom engine, scene 
graph, training simulation  

 
Read the following text and do the exercises given after it  

 
 
 
A game engine is 

a software framework primarily 
designed for the development 
of video games, and generally 
includes relevant libraries and 
support programs. The "engine" 
terminology is similar to the term 
"software engine" used in 
the software industry. 

Game engine can also refer to the development software utilizing this 
framework, typically offering a suite of tools and features for developing 
games.  

Developers can use game engines to construct games for video game 
consoles and other types of computers. The core functionality typically 
provided by a game engine may include a rendering engine ("renderer") 
for 2D or 3D graphics, a physics engine or collision detection (and 
collision response), sound, scripting, animation, artificial intelligence, 



 

networking, streaming, memory management, threading, localization 
support, scene graph, and video support for cinematics.  

Game engine implementers often economize on the process of game 
development by reusing/adapting, in large part, the same game engine to 
produce different games or to aid in porting games to multiple platforms. 

In many cases, game engines provide a suite of visual development 
tools in addition to reusable software components. These tools are 
generally provided in an integrated development environment to enable 
simplified, rapid development of games in a data-driven manner. Game-
engine developers often attempt to preempt implementer needs by 
developing robust software suites which include many elements a game 
developer may need to build a game. Most game-engine suites provide 
facilities that ease development, such as graphics, sound, physics 
and artificial-intelligence (AI) functions. These game engines are 
sometimes called "middleware" because, as with the business sense of the 
term, they provide a flexible and reusable software platform which 
provides all the core functionality needed, right out of the box, to develop 
a game application while reducing costs, complexities, and time-to-market 
— all critical factors in the highly competitive video-game industry. 

 

 
Fig. 12. The screen of  Quake 

 
Like other types of middleware, game engines usually 

provide platform abstraction, allowing the same game to run on 
various platforms (including game consoles and personal computers) with 
few, if any, changes made to the game source-code. Often, programmers 
design game engines with a component-based architecture that allows 
specific systems in the engine to be replaced or extended with more 



 

specialized (and often more expensive) game-middleware components. 
Some game engines comprise a series of loosely connected game 
middleware components that can be selectively combined to create a 
custom engine, instead of the more common approach of extending or 
customizing a flexible integrated product. However 
achieved, extensibility remains a high priority for game engines due to the 
wide variety of uses for which they are applied. Despite the specificity of 
the name "game engine", end-users often re-purpose game engines for 
other kinds of interactive applications with real-time 
graphical requirements - such as marketing demos, architectural 
visualizations, training simulations, and modeling environments.  

Some game engines only provide real-time 3D rendering capabilities 
instead of the wide range of functionality needed by games. These engines 
rely upon the game developer to implement the rest of this functionality or 
to assemble it from other game-middleware components. These types of 
engines are generally referred to as a "graphics engine", "rendering 
engine", or "3D engine" instead of the more encompassing term "game 
engine". This terminology is inconsistently used, as many full-featured 3D 
game engines are referred to simply as "3D engines". Examples of 
graphics engines include: Crystal Space, Genesis3D, Irrlicht, OGRE, 
RealmForge, Truevision3D, and Vision Engine. 

Modern game- or graphics-engines generally provide a scene graph - 
an object-oriented representation of the 3D game-world which often 
simplifies game design and can be used for more efficient rendering of 
vast virtual worlds. 

As technology ages, the components of an engine may become 
outdated or insufficient for the requirements of a given project. Since the 
complexity of programming an entirely new engine may result in 
unwanted delays (or necessitate that a project restart from the beginning), 
an engine-development team may elect to update their existing engine with 
newer functionality or components.  

[https://en.wikipedia.org/wiki/Game_engine] 
 
 
 
 
 
 



 

1. Text-based Assignments 
 

1.1. Give English equivalents of the following words and word 
combinations: 

 
Соответствующие библиотеки; игровая консоль; механизм 
визуализации; графический движок; многопоточность; поддержка 
локализации; специалист по внедрению, разработчик; способ 
управления данными; упреждать; надежное ПО; межплатформенное 
ПО; срок вывода на рынок; игровой исходный код; нестандартный 
движок; включать ряд компонентов; каждый раз по разному, 
непостоянно; тренировочное моделирование; нежелательные 
задержки; гибкий интегрированный продукт; быть замененным; 
более эффективная передача. 

 
1.2. What do the following prefixes and suffixes mean?  Translate these 

words from the text and determine their part of speech 
 
Functionality,  insufficient, interactive, unwanted, reusable, implementer, 
complexity, selectively,  restart,  discontinued, currently, informative, 
indefinitely. 

 
1.3. Match the following  economic terms with their definitions 

 
1. A graphics engine a) a core component of a complex software 

system. 
2. Competitive b) the art of creating three-dimensional images 

or animations showing the attributes of a 
proposed architectural design. 

3. A scene graph c) a physics model typically implemented in 
software for use in computer games 

4. Visualization  d) strongly desiring to be more successful than 
others; as good as or better than others of a 
comparable nature 

5. A game engine e) any technique for creating images, diagrams, 
or animations to communicate a message 

6. Architectural 
rendering, 

f) a general data structure commonly used by 
vector based graphics editing applications and 



 

architectural 
illustration, or 
visualization 

modern computer games 

 
1.4. Read the text again and decide if the following statements are true or 

false 
 

1) The "engine" terminology is not entirely similar to the term 
"software engine" used in the software industry. 

2) Developers can use game engines to construct games for video game 
consoles and other types of computers. 

3) The core functionality typically provided by a game engine may 
include   “3D engine” for 2D or 3D graphics. 

4) In many cases, game engines provide a suite of visual development 
tools in addition to reusable software components. 

5) Complexity of programming is the only requirement in today’s 
demanding market of video-game industry. 

6) Modern game- or graphics-engines generally provide a scene graph - 
an object-oriented representation of the 3D game-world. 

7) End-users often re-purpose game engines for other kinds of 
interactive applications with real-time graphical requirements. 

8) Game engine implementers never economize on the process of game 
development because they want to produce different games. 

 
1.5. Answer the following questions on the text   

 
1) What is a game engine? 
2) What does a game engine include? 
3) What types of engines are referred to as “graphics” engines? Can 

you give any examples of them? 
4) What do game engines provide? 
5) Is it necessary to know how to add realism to a character, how to 

add graphics effects or how to animate a sprite? Or is this all taken 
care by the game engine? 

6) If you're only aiming for a small 2D project, you probably don't 
need a chunky engine that's going to come with a lot of features 
you don't need. Do you agree with this statement? 



 

7) What can you say about development of engines as technology 
ages? 

2. Focus on Grammar 
 
2.1. State whether the –ing forms given in the following sentences are 
Participles or Gerunds. In the case of Participles define the noun or 
pronoun they qualify. Translate the sentences into Russian 
 

1) Supporting multiple programs and users is the function of mainframe 
operating systems.  

2) Designing webpages you needn’t learn how to program in HTML.  
3) There exists special-purpose memory where writing is seldom 

necessary.  
4) Programming involves analyzing the problem to be solved.  
5) The data being transmitted is of great importance.  
6) The aim of our seminar is studying basic stages of programming.  
7)  Howard Aiken completed a fully automatic calculator using standard 

machine components.  
8) While solving the arithmetical problem the computer failed.  
9) Using the appropriate CAD software the designer can perform 

various analyses on the object.  
10)  The Web is an Internet service making web pages available to 

millions of users. 
 
2.2.  Study the following table Conditionals  
 

 if condition result 
1 type  Present Simple will + base verb 
 If  

If 
Tara is free tomorrow, 
they do not pass their exam, 
 
There is a real possibility that 
the condition will happen. 

he will invite her. 
their teacher will be sad. 

2 type  Past Simple would + base verb 
 If 

If 
it snowed next July, 
I won the lottery,  
 
There is an unreal possibility 
that the condition will 
happen. 

would you be surprised? 
I would buy a car. 
 



 

 

3 type  Past Perfect would have + past participle
 If 

If 
Tara had been free yesterday, 
it had rained yesterday,  
 
Both the condition and result 
are impossible now. 

I would have invited her. 
what would you have done? 

 
2.3. Open the brackets to form Conditionals 

 
1) If we _______ (not / work) harder, we_________ (not pass) the 

exam. (1) 
2) If the students _________ (not be) late for the exam, they 

__________ (pass). (3) 
3) If she ________ (have) her laptop with her, she  _______ (email) me. 

(2)  
4) If she ______ (not go) to the meeting, I________ (not go) either. (1) 
5) If the teacher ____________ (give) us lots of homework this 

weekend, I __________(not be) happy. (3) 
6) If I __________(want) a new car, I ___________(buy) one. (2) 

We ____________ (not have) so many arguments if  you _________ 
(not be) so stubborn! (2)  

7) I ________ (not meet) Amanda, if I ______ (not go) to the party. (3) 
8) If you _________ (arrive) early, it_________ (be) less stressful. (3) 
9) If we __________ (not be) so tired, we___________ (go) out. (2) 
10) If you __________ (buy) the present, I__________(wrap) it up. (1)  
11) If Lucy __________ (not quit) her job soon, she __________ (go) 

crazy. (1) 
 

2.4. Rewriting Conditionals. How can you express these ideas using 
conditional constructions? 
 

Model: I don't know whether I'm going to Australia. Let's suppose I go. 
What can I do there? 
– If I went to Australia, I could see the Sydney Harbour Bridge. 

 
1) You went to the lecture. I'm sure you saw him. You can't have 

avoided seeing him.  
2) How can I get experience in speaking English? 



 

3) I hope I won't fail my end of semester exams. How can I make sure I 
pass?  

4) Every time we finished an online quiz, we celebrated by having a 
coffee. 

5) I always feel much happier when the sun is shining. 
6) I wish the library was open right now. I want to borrow a book. 

 
3. Discussion 

 
3.1. Explain the concept of game engine in your own words  

3.2. Choose one of the game engines mentioned  and prepare a report on 
the topic “What are the advantages and disadvantages of this game 
engine” 

 Unity,  Unreal Engine, GameMaker,  CryEngine,  MonoGame,  Construct 

 
4. Additional Reading 

 
4.1. Read and translate the following text. You can use a dictionary if 

necessary     
Artificial Intelligence 

 
Artificial intelligence is the simulation of human intelligence 

processes by machines, especially computer systems. Specific applications 
of AI include expert systems, natural language processing, speech 
recognition and machine vision. 

As the hype around AI has accelerated, vendors have been 
scrambling to promote how their products and services use AI. Often what 
they refer to as AI is simply one component of AI, such as machine 
learning. AI requires a foundation of specialized hardware and software 
for writing and training machine learning algorithms. No one 
programming language is synonymous with AI, but a few, including 
Python, R and Java, are popular. 

In general, AI systems work by ingesting large amounts of labeled 
training data, analyzing the data for correlations and patterns, and using 
these patterns to make predictions about future states. In this way, a 
chatbot that is fed examples of text chats can learn to produce lifelike 



 

exchanges with people, or an image recognition tool can learn to identify 
and describe objects in images by reviewing millions of examples. 

AI programming focuses on three cognitive skills: learning, 
reasoning and self-correction. 

Learning processes. This aspect of AI programming focuses on 
acquiring data and creating rules for how to turn the data into actionable 
information. The rules, which are called algorithms, provide computing 
devices with step-by-step instructions for how to complete a specific task. 

Reasoning processes. This aspect of AI programming focuses on 
choosing the right algorithm to reach a desired outcome. 

Self-correction processes. This aspect of AI programming is 
designed to continually fine-tune algorithms and ensure they provide the 
most accurate results possible. 

AI is important because it can give enterprises insights into their 
operations that they may not have been aware of previously and because, 
in some cases, AI can perform tasks better than humans. Particularly when 
it comes to repetitive, detail-oriented tasks like analyzing large numbers of 
legal documents to ensure relevant fields are filled in properly, AI tools 
often complete jobs quickly and with relatively few errors. 

This has helped fuel an explosion in efficiency and opened the door 
to entirely new business opportunities for some larger enterprises. Prior to 
the current wave of AI, it would have been hard to imagine using computer 
software to connect riders to taxis, but today Uber has become one of the 
largest companies in the world by doing just that. It utilizes sophisticated 
machine learning algorithms to predict when people are likely to need 
rides in certain areas, which helps proactively get drivers on the road 
before they're needed. As another example, Google has become one of the 
largest players for a range of online services by using machine learning to 
understand how people use their services and then improving them. In 
2017, the company's CEO, Sundar Pichai, pronounced that Google would 
operate as an "AI first" company. 

Today's largest and most successful enterprises have used AI to 
improve their operations and gain advantage on their competitors.  

Artificial neural networks and deep learning artificial intelligence 
technologies are quickly evolving, primarily because AI processes large 
amounts of data much faster and makes predictions more accurately than 
humanly possible. 



 

 

bury a human researcher, AI applications that use machine learning can 
take that data and quickly turn it into actionable information. As of this 
writing, the primary disadvantage of using AI is that it is expensive to 
process the large amounts of data that AI programming requires. 
Advantages 

 Good at detail-oriented jobs; 
 Reduced time for data-heavy tasks; 
 Delivers consistent results; and 
 AI-powered virtual agents are always available. 

Disadvantages 
 Expensive; 
 Requires deep technical expertise; 
 Limited supply of qualified workers to build AI tools; 
 Only knows what it's been shown; and 
 Lack of ability to generalize from one task to another. (3500) 

[https://www.techtarget.com/searchenterpriseai/definition/AI-Artificial-
Intelligence] 

4.2. Answer the following questions: 
 

1) How does AI work? 
2) Why is artificial intelligence important? 
3) What are the advantages and disadvantages of artificial 

intelligence?  
 
4.3. Translate the following sentences 
 

1) Игровые движки предоставляют средства разработки, которые 
могут быть использованы программистами, чтобы упростить их 
работу. Короче говоря, предоставляют инструменты и 
функциональные возможности для разработки игры. 

2) HTML5 движки пользуются популярностью среди разработчиков 
игр. Один из таких Turblenz, открытая платформа для 
разработчиков игр.  

3) Он включает в себя все основные функции, которые необходимы, 
чтобы разработать, интегрировать и монетизировать игру. Кроме 
того, нет никаких ограничений в использовании, так как он 
доступен по лицензии MIT. 

While the huge volume of data being created on a daily basis would 



 

4) Термин «игровой движок» появился в середине 1990-х в контексте 
компьютерных игр жанра шутер от первого лица, похожих на 
популярную в то время Doom. 

5) Большинство игровых движков разработано и настроено для того, 
чтобы запустить определённую игру на определённой платформе. 

6) И даже наиболее обобщённые многоплатформенные движки 
подходят для построения игр определённого жанра, например, 
шутеров первого лица или гонок.  

7) В данном контексте можно более аккуратно сказать, что игровой 
движок становится не оптимальным при его применении не для 
той игры или той платформы, для которой разработан.  

8) Данный эффект проявляется от того, что программное обеспечение 
представляет собой набор компромиссов, основанных на тех 
предположениях, какой должна быть игра. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

TEXTS FOR ADDITIONAL READING 
 

TEXT 1. Education-oriented languages 

1. Read and translate the text about education-oriented languages 
 
BASIC 
BASIC (beginner’s all-purpose symbolic instruction code) was 

designed at Dartmouth College in the mid-1960s by John Kemeny and 
Thomas Kurtz. It was intended to be easy to learn by novices, particularly 
non-computer science majors, and to run well on a time-sharing 
computer with many users. It had simple data structures and notation and it 
was interpreted: a BASIC program was translated line-by-line and 
executed as it was translated, which made it easy to locate programming 
errors. 

Its small size and simplicity also made BASIC a popular language 
for early personal computers. Its recent forms have adopted many of the 
data and control structures of other contemporary languages, which makes 
it more powerful but less convenient for beginners. 

Pascal 
About 1970 Niklaus Wirth of Switzerland designed Pascal to teach 

structured programming, which emphasized the orderly use of conditional 
and loop control structures without GOTO statements. Although Pascal 
resembled ALGOL in notation, it provided the ability to define data types 
with which to organize complex information, a feature beyond the 
capabilities of ALGOL as well as FORTRAN and COBOL. User-defined 
data types allowed the programmer to introduce names for complex data, 
which the language translator could then check for correct usage before 
running a program. 

During the late 1970s and ’80s, Pascal was one of the most widely 
used languages for programming instruction. It was available on nearly all 
computers, and, because of its familiarity, clarity, and security, it was used 
for production software as well as for education. 

Logo 
Logo originated in the late 1960s as a 

simplified LISP dialect for education; Seymour Papert and others used it at 
MIT to teach mathematical thinking to schoolchildren. It had a more 
conventional syntax than LISP and featured “turtle graphics,” a simple 
method for generating computer graphics. (The name came from an early 



 

project to program a turtlelike robot.) Turtle graphics used body-centred 
instructions, in which an object was moved around a screen by commands, 
such as “left 90” and “forward,” that specified actions relative to the 
current position and orientation of the object rather than in terms of a fixed 
framework. Together with recursive routines, this technique made it easy 
to program intricate and attractive patterns. 

Hypertalk 
Hypertalk was designed as “programming for the rest of us” by Bill 

Atkinson for Apple’s Macintosh. Using a simple English-like syntax, 
Hypertalk enabled anyone to combine text, graphics, and audio quickly 
into “linked stacks” that could be navigated by clicking with a mouse on 
standard buttons supplied by the program. Hypertalk was particularly 
popular among educators in the 1980s and early ’90s for classroom 
multimedia presentations. Although Hypertalk had many features of 
object-oriented languages (described in the next section), Apple did not 
develop it for other computer platforms and let it languish; as Apple’s 
market share declined in the 1990s, a new cross-platform way of 
displaying multimedia left Hypertalk all but obsolete (see the 
section World Wide Web display languages 
 

2. Ask five question on the text  
 
 

TEXT 2 
 
1. Read and translate the text and suggest your  title for it 
 

 Object-oriented analysis and design (OOAD) is a software 
engineering approach that models a system as a group of interacting 
objects. Each object represents some entity of interest in the system being 
modeled, and is characterized by its class, its state (data elements), and its 
behavior. 

 Various models can be created to show the static structure, dynamic 
behavior, and run-time deployment of these collaborating objects. There 
are a number of different notations for representing these models, such as 
the Unified Modeling Language (UML). 

 Object-oriented analysis (OOA) applies object-modeling techniques 
to analyze the functional requirements for a system. Object-oriented design 



 

 

(OOD) elaborates the analysis models to produce implementation 
specifications. OOA focuses on what the system does, OOD on how the 
system does it 

 An object-oriented system is composed of objects. The behavior of 
the system results from the collaboration of those objects. Collaboration 
between objects involves sending messages to each other. Sending a 
message differs from calling a function in that when a target object 
receives a message, it itself decides what function to carry out to service 
that message. The same message may be implemented by many different 
functions, the one selected depending on the state of the target object. 

 The implementation of "message sending" varies depending on the 
architecture of the system being modeled, and the location of the objects 
being communicated with. 

Object-oriented analysis (OOA) looks at the problem domain, with 
the aim of producing a conceptual model of the information that exists in 
the area being analyzed. Analysis models do not consider any 
implementation constraints that might exist, such as concurrency, 
distribution, persistence, or how the system is to be built. Implementation 
constraints are dealt during object-oriented design (OOD). Analysis is 
done before the Design. 

 The sources for the analysis can be a written requirements statement, 
a formal vision document, interviews with stakeholders or other interested 
parties. A system may be divided into multiple domains, representing 
different business, technological, or other areas of interest, each of which 
are analyzed separately. 

 The result of object-oriented analysis is a description of what the 
system is functionally required to do, in the form of a conceptual model. 
That will typically be presented as a set of use cases, one or more UML 
class diagrams, and a number of interaction diagrams. It may also include 
some kind of user interface mock-up. The purpose of object oriented 
analysis is to develop a model that describes computer software as it works 
to satisfy a set of customer defined requirements. 

 Object-oriented design (OOD) transforms the conceptual model 
produced in object-oriented analysis to take account of the constraints 
imposed by the chosen architecture and any non-functional – technological 
or environmental – constraints, such as transaction throughput, response 
time, run-time platform, development environment, or programming 
language. 



 

 

 The concepts in the analysis model are mapped onto implementation 
classes and interfaces. The result is a model of the solution domain, a 
detailed description of how the system is to be built. (3200) 

[https://www.brainkart.com/article/What-is-OOAD(Object-oriented-analysis-
and-design)-_9969/] 

 
2. Give a two-minute talk about:  a)  object-oriented analysis, b) object-
oriented design 
  

TEXT 3. Rendering and its Features 
 
1. Read and translate the following text about rendering or image 
synthesis 
 

Rendering or image synthesis is the process of generating a 
photorealistic or non-photorealistic image from a 2D or 3D model by 
means of a computer program. The resulting image is referred to as the 
render. Multiple models can be defined in a scene file containing objects in 
a strictly defined language or data structure. The scene file contains 
geometry, viewpoint, texture, lighting, and shading information describing 
the virtual scene. The data contained in the scene file is then passed to a 
rendering program to be processed and output to a digital image or raster 
graphics image file. The term "rendering" is analogous to the concept of an 
artist's impression of a scene. The term "rendering" is also used to describe 
the process of calculating effects in a video editing program to produce the 
final video output. 

Rendering is one of the major sub-topics of 3D computer graphics, 
and in practice it is always connected to the others. It is the last major step 
in the graphics pipeline, giving models and animation their final 
appearance. With the increasing sophistication of computer graphics since 
the 1970s, it has become a more distinct subject. 

Rendering has uses in architecture, video games, simulators, movie 
and TV visual effects, and design visualization, each employing a different 
balance of features and techniques. A wide variety of renderers are 
available for use. Some are integrated into larger modeling and animation 
packages, some are stand-alone, and some are free open-source projects. 
On the inside, a renderer is a carefully engineered program based on 
multiple disciplines, including light physics, visual perception, 
mathematics, and software development. 



 

Though the technical details of rendering methods vary, the general 
challenges to overcome in producing a 2D image on a screen from a 3D 
representation stored in a scene file are handled by the graphics pipeline in 
a rendering device such as a GPU. A GPU is a purpose-built device that 
assists a CPU in performing complex rendering calculations. If a scene is 
to look relatively realistic and predictable under virtual lighting, the 
rendering software must solve the rendering equation. The rendering 
equation doesn't account for all lighting phenomena, but instead acts as a 
general lighting model for computer-generated imagery. 

In the case of 3D graphics, scenes can be pre-rendered or generated 
in real-time. Pre-rendering is a slow, computationally intensive process 
that is typically used for movie creation, where scenes can be generated 
ahead of time, while real-time rendering is often done for 3D video games 
and other applications that must dynamically create scenes. 3D hardware 
accelerators can improve real-time rendering performance. (2700) 

[ https://en.wikipedia.org/wiki/Rendering_(computer_graphics)] 
 
2. What is the main idea of rendering? 

 
3. Write a short summary of the text according to the  plan (note that you 
don’t have to use all the phrases).  
 
План аннотации:  
1) название статьи (текста): 
– Текст называется….  
– Название статьи, которую я прочел…  
– Название статьи указывает на то, что в статье говорится о…  
2) автор статьи, где и когда она была опубликована:  
– Статья написана…. и опубликована в ….  
– К сожалению, имя автора неизвестно.  
– Текст взят из интернет-источника.  
3) основная идея статьи (текста):  
– Основная идея текста заключается в том, что…  
– Статья посвящена проблеме…  
– Цель статьи состоит в том, чтобы…  
4) содержание статьи, факты, названия, цифры:  
– Автор начинает изложение материала с …  



 

 

– Автор привлекает внимание читателя к вопросу…  
– Особое внимание уделяется…  
– Согласно данным, представленным в статье…  
– Подчеркивается (отмечается/ утверждается/ доказывается/  
опровергается/ ставится под сомнение)….  
– Автор приводит подробный анализ…  
– Далее описываются факты… (приводятся примеры того как…/  
описываются случаи…).  
– В заключении автор отмечает (утверждает/ подчеркивает,  
акцентирует внимание на..)  
– Подводя итог, автор приходит к выводу…  
5) ваше мнение:  
– Статья показалась мне интересной (информативной), т.к. в ней 
приводятся…  
– Считаю необходимым привести некоторые примеры из жизни (из 
других статей), описывающие те же явления, что и в данном 
тексте.  
– Идеи, предложенные автором, могут быть применены в таких 
областях, как …  
– Некоторые положения кажутся противоречивыми, т.к….  
– Статья может быть полезна для тех, кто учится на …  
(работает в сфере…). 

 

 
TEXT 4. The Four Types of Artificial Intelligence 

 
1. Read and translate the  following text about types of AI and make up a 

short summary of it. Follow the plan given  above 
 
Reactive Machines  
A reactive machine follows the 

most basic of AI principles and, as its 
name implies, is capable of only using 
its intelligence to perceive and react to 
the world in front of it. A reactive 
machine cannot store a memory and as 
a result cannot rely on past 
experiences to inform decision making 
in real-time. 



 

Perceiving the world directly means that reactive machines are 
designed to complete only a limited number of specialized duties. 
Intentionally narrowing a reactive machine’s worldview is not any sort of 
cost-cutting measure, however, and instead means that this type of AI will 
be more trustworthy and reliable — it will react the same way to the same 
stimuli every time.  

A famous example of a reactive machine is Deep Blue, which was 
designed by IBM in the 1990’s as a chess-playing supercomputer and 
defeated international grandmaster Gary Kasparov in a game. Deep Blue 
was only capable of identifying the pieces on a chess board and knowing 
how each moves based on the rules of chess, acknowledging each piece’s 
present position, and determining what the most logical move would be at 
that moment. The computer was not pursuing future potential moves by its 
opponent or trying to put its own pieces in better position. Every turn was 
viewed as its own reality, separate from any other movement that was 
made beforehand. 

Another example of a game-playing reactive machine is 
Google’s AlphaGo. AlphaGo is also incapable of evaluating future moves 
but relies on its own neural network to evaluate developments of the 
present game, giving it an edge over Deep Blue in a more complex game. 
AlphaGo also bested world-class competitors of the game, defeating 
champion Go player Lee Sedol in 2016. 

Though limited in scope and not easily altered, reactive machine 
artificial intelligence can attain a level of complexity, and offers reliability 
when created to fulfill repeatable tasks. 

 
Limited Memory 
Limited memory artificial intelligence has the ability to store 

previous data and predictions when gathering information and weighing 
potential decisions — essentially looking into the past for clues on what 
may come next. Limited memory artificial intelligence is more complex 
and presents greater possibilities than reactive machines. 

Limited memory AI is created when a team continuously trains a 
model in how to analyze and utilize new data or an AI environment is built 
so models can be automatically trained and renewed. When utilizing 
limited memory AI in machine learning, six steps must be followed: 
Training data must be created, the machine learning model must be 
created, the model must be able to make predictions, the model must be 



 

able to receive human or environmental feedback, that feedback must be 
stored as data, and these these steps must be reiterated as a cycle. 

 

Theory of Mind 
Theory of Mind is just that – theoretical. We have not yet achieved 

the technological and scientific capabilities necessary to reach this next 
level of artificial intelligence.  

The concept is based on the psychological premise of understanding 
that other living things have thoughts and emotions that affect the behavior 
of one’s self. In terms of AI machines, this would mean that AI could 
comprehend how humans, animals and other machines feel and make 
decisions through self-reflection and determination, and then will utilize 
that information to make decisions of their own. Essentially, machines 
would have to be able to grasp and process the concept of “mind,” the 
fluctuations of emotions in decision making and a litany of other 
psychological concepts in real time, creating a two-way relationship 
between people and artificial intelligence. 

 

 Self-awareness 
Once Theory of Mind can be established in artificial intelligence, 

sometime well into the future, the final step will be for AI to become self-
aware. This kind of artificial intelligence possesses human-level 
consciousness and understands its own existence in the world, as well as 
the presence and emotional state of others. It would be able to understand 
what others may need based on not just what they communicate to them 
but how they communicate it.  

Self-awareness in artificial intelligence relies both on human 
researchers understanding the premise of consciousness and then learning 
how to replicate that so it can be built into machines. (4300) 

[https://www.govtech.com/computing/understanding-the-four-types-of-
artificial-intelligence.html] 

 



 

2. Answer the following questions: Why is AI important? How does AI 
work? 
 

3. Prepare a report on a brief history of Artificial Intelligence 
 
 

TEXT 5.  Basic Concepts of Linux 
  

1. Read and translate the text about Linux system 
 

Linux looks and feels much like any other UNIX system; indeed, 
UNIX compatibility has been a major design goal of the Linux project. 
However, Linux is much younger than most UNIX systems. Its 
development began in1991, when a Finnish university student, Linus 
Torvalds, began developing a small but self-contained kernel for the 80386 
processor, the first true 32-bitprocessor in Intel’s range of PC-compatible 
CPUs. of arbitrary files (but only read-only memory mapping was 
implemented in 1.0). 

A range of extra hardware support was included in this release. 
Although still restricted to the Intel PC platform, hardware support had 
grown to include floppy-disk and CD-ROM devices, as well as sound 
cards, a range of mice, and international keyboards. Floating-point 
emulation was provided in the kernel for 80386 users who had no 80387 
math coprocessor. System V UNIX-style interprocess communication 
(IPC), including shared memory, semaphores, and message queues, was 
implemented. 

 Linux kernel is composed entirely of code written from scratch 
specifically for the Linux project, much of the supporting software that 
makes up the Linux system is not exclusive to Linux but is common to a 
number of UNIX-like operating systems. In particular, Linux uses many 
tools developed as part of Berkeley’s BSD operating system, MIT’s X 
Window System, and the Free Software Foundation’s GNU project. 

This sharing of tools has worked in both directions. The main system 
libraries of Linux were originated by the GNU project, but the Linux 
community greatly improved the libraries by addressing omissions, 
inefficiencies, and bugs. Other components, such as the GNU C compiler 
(gcc), were already of sufficiently high quality to be used directly in 
Linux. The network administration tools under Linux were derived from 



 

code first developed for 4.3 BSD, but more recent BSD derivatives, such 
as FreeBSD, have borrowed code from Linux in return. Examples of this 
sharing include the Intel floating-point-emulation math library and the PC 
sound-hardware device drivers. 

 The Linux system as a whole is maintained by a loose network of 
developers collaborating over the Internet, with small groups or 
individuals having responsibility for maintaining the integrity of specific 
components. 

 A small number of public Internet file-transfer-protocol (FTP) 
archive sites act as de facto standard repositories for these components. 
The File System Hierarchy Standard document is also maintained by the 
Linux community as a means of ensuring compatibility across the various 
system components. 

 This standard specifies the overall layout of a standard Linux file 
system; it determines under which directory names configuration files, 
libraries, system binaries, and run-time data files should be stored. 

 

Linux Distributions 
In theory, anybody can install a Linux system by fetching the latest 

revisions of the necessary system components from the FTP sites and 
compiling them. In Linux’s early days, this is precisely what a Linux user 
had to do. As Linux has matured, however, various individuals and groups 
have attempted to make this job less painful by providing standard, 
precompiled sets of packages for easy installation. 

These collections, or distributions, include much more than just the 
basic Linux system. They typically include extra system-installation and 
management utilities, as well as precompiled and ready-to-install packages 
of many of the common UNIX tools, such as news servers, web browsers, 
text-processing and editing tools, and even games. 

The first distributions managed these packages by simply providing a 
means of unpacking all the files into the appropriate places. One of the 
important contributions of modern distributions, however, is advanced 
package management. Today’s Linux distributions include a package-
tracking database that allows packages to be installed, upgraded, or 
removed painlessly. (3900) 

[Abridged from https://www.brainkart.com/article/Linux-System---Basic-
Concepts_9864/] 

 
 



 

2. Test yourself. If you don’t know the answers for some questions, you 
can find them in Internet later for homework 

 
What do you know about Linux? 

 
1. Linux development began in …? 
    a) 1978               
    b) 1991 
    c) 2001 
2. How many basic elements or components of Linux are there? 
    a) 5 
    b) 3 
    c) 6 
3. What is the main component of Linux OS? 
    a) hardware 
    b) kernel 
    c) shell 
4. What is Linux shell? 
    a) a user interface present between user and kernel. 
    b) a type of process that can be in a number of different states. 
    c) a resource manager that acts as a bridge between hardware and 

software. 
5) What is CLI? 
    a) a command-line program that usually accepts text as input to execute 

or run functions of the operating system. 
     b) a human-computer interface that allows users to interact with 

electronic devices through graphical icons and visual indicators. 
6. The Linux system as a whole is maintained … 
    a) by long-term  public support. 
    b) by a loose network of developers collaborating over the Internet. 
7. Name command that is used to remove files. 
    a) delete 
    b) dr 
    c) rm 
    d) None of the above 
8. Name the person who developed Linux. 
    a) Linus Torvalds 
    b) Dennis Ritchie 



 

    c) Prof. Andrew S. Tannenbaum 
    d) None of the above 
9. Maximum size (in bytes) of the filename in Linux can be? 
    a) 64 bytes  
    b) 32 bytes 
    c) 128 bytes 
    d) 255 bytes 
10. What are the characteristics of Linux OS? 
    a) It is an open-source and free-to-use. 
    b) It is not open source and is not free to use. 
    c) It has very low hardware requirements and facilitates powerful 

support for networking. 
    d) None of the above. 
 
Answer key to the task: 1.b);  2.a);   3.b);  4.a);  5.a);  6.b);  7.b);  8.d);  
9.c);  10.a).  
 
 

TEXT 6. A Developer’s Guide to Communicating with Clients 
 
1. Read and translate the following text about a successful conversation 
between a software developer and a client  
 

If you are a developer that does not always feel comfortable to 
communicate with the clients and all you want to do is just code and more 
code, then this article is created with you in my mind. 
1) Informing clients that you have received a task 

The first thing that crossed my mind as important is noting clients 
you have received a task that has been assigned to you. Maybe some of 
you might think how this is a no brainer but this little step is very 
important in everyday communication. 
Situation A) The client assigns a task. A developer is available to look 
 at it. 
Solution: You should inform the client that you will look at it right away 
and come back to him with the more informed feedback or you can take a 
quick look and in the first response provide some questions to better 
understand what needs to be done. 
 



 

 

Situation B) The client assigns a task. A developer is not free to look at it 
immediately. 
Solution: Thank them for providing information regarding the task and 
inform them that you will start with it as soon as possible. This way you 
have let them know that you are not available at the moment, but as soon 
as you will be, you will work on it. 
Do not: 

 Ignore the task for a day or couple of days while you don’t become 
available for resolving process. 

 Share additional information of why you cannot take this task right 
away. You will just complicate things that shouldn’t be complicated. 

2) Frequently updating the client about the task progress 
In most cases, a developer would inform the client that he has started with 
the task and he would not give any updates until he’s not finished. If we 
are talking about a task that needs a day or two to be completed, it is 
definitely right approach, as we don’t want to burden the client with too 
much updates. However, more time-consuming tasks that need at least 7-
10 days to be fulfilled should be given updates from time to time. 
The status updates shouldn’t be: 

 Too big or too short 
 Too often (i.e. if you are working on it for 7 days, 3 updates are 

enough) 
 
Solution: You can start with it now and at the end of the day update the 
client about the progress. At least you have done something.  
Solution:  You should be honest with what is going on. You were busy 
with the emergency task(s) and you are starting with this task now. You 
will apologies and prioritise this task. Maybe the client will not be satisfied 
with these explanations at the moment, but don’t be afraid. He will 
appreciate your honesty after some time. 
Do not: 

 Lie to the client that you have done something which in reality you 
have not even started yet. Remember that lies always come out in the 
end. 

3) Avoiding writing too long posts 
You should remember that the client doesn’t have the time to read 

long posts, especially if something can be said in short and without 
complications. If you have written too long post, it might seem that you 



 

 

didn’t understand the task well. So always try to simplify things, if you 
can. 
4) Notifying the client on the time about your vacations and 
obligations 

Inform the client about your planned vacation in advance so that he 
can plan tasks towards you. Also, don’t take any complex tasks knowing 
that in the middle of their progress you will be gone and not available to 
check upon them. When you are about to go on a vacation, name another 
developer to be on the service if something is urgent. 

In the situation when you got sick or have some unexpected things to 
deal with, ask your teammates or team leader to write a quick note that you 
will be unavailable for a specific period of time on projects you work. 
With these approaches you will receive a lot of respect from the client. 

But what should you do if the project is progressing slowly because 
of the client and now you have a 2 weeks delay from release? This is 
something that definitely requires individual approach and a deeper 
analysis of the situation. If you are very indecisive about how to react, the 
following question will maybe help to make a right decision: 

 How important is this project for your company? 
 Will this project really be launched in 2 weeks or maybe in 4-6 

weeks? 
 Can someone fulfill your position while you are away? 

If you are willing to give it a try and move your vacation towards the 
project, you should let the client know that you’ve decided to stay in order 
to get things done, but make a clear deadline for how long you will be 
available. This way you will not feel guilty if another deadline is passed. 
If you have mastered these skills in your everyday work then clients 
probably enjoy working with you. 
What to do in the situation when the client is angry and rude? 

From my experience, it is important to not be emotionally 
involved with a message and to respond cool-headed. The tone of the 
message should be calm and with respect. Don’t be afraid even if it is your 
mistake. Examine the situation – why did this happen and can it be fixed. 
Try to propose a solution. If you are not sure how to handle this situation, 
ask for your team leader to jump in.The fact is that good communication is 
sure evidence of a future long-term relationship. (4190) 

[Abridged from https://inchoo.net/life-at-inchoo/developers-guide-
communicating-clients/ by Antonija Tadic] 

 



 

 

3. Imagine that you’re in one of the situations mentioned above. 
Dramatize a dialogue with your group mates in class on the topic 
‘communicating with a client’ 
 
TEXT 7. Polymorphism, Encapsulation, and Inheritance Work 

Together 
 

1. Read and translate the following text  
 

When properly applied, polymorphism, encapsulation, and 
inheritance combine to produce a programming environment that supports 
the development of far more robust and scaleable programs than does the 
process-oriented model. A well-designed hierarchy of classes is the basis 
for reusing the code in which you have invested time and effort developing 
and testing. Encapsulation allows you to migrate your implementations 
over time without breaking the code that depends on the public interface of 
your classes. Polymorphism allows you to create clean, sensible, readable, 
and resilient code. 

Of the two real-world examples, the automobile more completely 
illustrates the power of object-oriented design. Dogs are fun to think about 
from an inheritance standpoint, but cars are more like programs. All 
drivers rely on inheritance to drive different types (subclasses) of vehicles. 
Whether the vehicle is a school bus, a Mercedes sedan, a Porsche, or the 
family minivan, drivers can all more or less find and operate the steering 
wheel, the brakes, and the accelerator. After a bit of gear grinding, most 
people can even manage the difference between a stick shift and an 
automatic, because they fundamentally understand their common 
superclass, the transmission. 

People interface with encapsulated features on cars all the time. The 
brake and gas pedals hide an incredible array of complexity with an 
interface so simple you can operate them with your feet! The 
implementation of the engine, the style of brakes, and the size of the tires 
have no effect on how you interface with the class definition of the pedals. 

The final attribute, polymorphism, is clearly reflected in the ability of 
car manufacturers to offer a wide array of options on basically the same 
vehicle. For example, you can get an antilock braking system or traditional 
brakes, power or rack-and-pinion steering, and 4-, 6-, or 8-cylinder 
engines. Either way, you will still press the brake pedal to stop, turn the 



 

 

steering wheel to change direction, and press the accelerator when you 
want to move. The same interface can be used to control a number of 
different implementations. 

As you can see, it is through the application of encapsulation, 
inheritance, and polymorphism that the individual parts are transformed 
into the object known as a car. The same is also true of computer 
programs. By the application of object-oriented principles, the various 
parts of a complex program can be brought together to form a cohesive, 
robust, maintainable whole. 

As mentioned at the start of this section, every Java program is 
object-oriented. Or, put more precisely, every Java program involves 
encapsulation, inheritance, and polymorphism. Although the short example 
programs shown in the rest of this chapter and in the next few chapters 
may not seem to exhibit all of these features, they are nevertheless present. 
As you will see, many of the features supplied by Java are part of its built-
in class libraries, which do make extensive use of encapsulation, 
inheritance, and polymorphism.  

[https://www.brainkart.com/article/Object-Oriented-Programming_10384/] 
 
2. Ask five questions on the text about polymorphism, encapsulation, and 
inheritance 

 

TEXT 8. Role of Process in Software Quality 

  

The need for software products of high quality has pressured those in 
the profession to identify and quantify quality factors such as usability, 
testability, maintainability, and reliability, and to identify engineering 
practices that support the production of quality products having these 
favorable attributes. Among the practices identified that contribute to the 
development of high-quality software are project planning, requirements 
management, development of formal specifications, structured design with 
use of information hiding and encapsulation, design and code reuse, 
inspections and reviews, product and process measures, education and 
training of software professionals, development and application of CASE 
tools, use of effective testing techniques, and integration of testing 
activities into the entire life cycle. In addition to identifying these 
individual best technical and managerial practices, software researchers 
realized that it was important to integrate them within the context of a 
high-quality software development process. 



 

What is a process in software development? 
 Process, in the software engineering domain, is the set of methods, 

practices, standards, documents, activities, policies, and procedures 
that software engineers use to develop and maintain a software 
system and its associated artifacts, such as project and test plans, 
design documents, code, and manuals. 

 
Fig. 13. Components of an engineering process 

 
It also was clear that adding individual practices to an existing 

software development process in an ad hoc way was not satisfactory. The 
software development process, like most engineering artifacts, must be 
engineered. That is, it must be designed, implemented, evaluated, and 
maintained. As in other engineering disciplines, a software development 
process must evolve in a consistent and predictable manner, and the best 
technical and managerial practices must be integrated in a systematic way. 
These models allow an organization to evaluate its current software 
process and to capture an understanding of its state. Strong support for 
incremental process improvement is provided by the models, consistent 
with historical process evolution and the application of quality principles. 
The models have received much attention from industry, and resources 
have been invested in process improvement efforts with many successes 
recorded. 

 All the software process improvement models that have had wide 
acceptance in industry are high-level models, in the sense that they focus 



 

on the software process as a whole and do not offer adequate support to 
evaluate and improve specific software development sub processes such as 
design and testing. Most software engineers would agree that testing is a 
vital component of a quality software process, and is one of the most 
challenging and costly activities carried out during software development 
and maintenance. (2900)  

[https://www.brainkart.com/article/Role-of-process-in-software-quality_9136/] 
  

2. Explain in your own words the following terms ‘process’, ‘software 
development process’, ‘models’ and ‘techniques’ 

 

TEXT 9.  Mobile Computing Applications 

 

 1. Read and translate the following text about mobile computing 

For Estate Agents 
Estate agents can work either at home or out in the field. With mobile 

computers they can be more productive. They can obtain current real estate 
information by accessing multiple listing services, which they can do from 
home, office or car when out with clients. They can provide clients with 
immediate feedback regarding specific homes or neighbourhoods, and 
with faster loan approvals, since applications can be submitted on the spot. 
Therefore, mobile computers allow them to devote more time to clients. 

 Emergency Services 
Ability to receive information on the move is vital where the 

emergency services are involved. Information regarding the address, type 
and other details of an incident can be dispatched quickly, via a CDPD 
system using mobile computers, to one or several appropriate mobile units 
which are in the vicinity of the incident. Here the reliability and security 
implemented in the CDPD system would be of great advantage. 



 

 

Fig. 14. Police incident information screen 

In courts 
Defence counsels can take mobile computers in court. When the 

opposing counsel references a case which they are not familiar, they can 
use the computer to get direct, real-time access to on-line legal database 
services, where they can gather information on the case and related 
precedents. Therefore mobile computers allow immediate access to a 
wealth of information, making people better informed and prepared. 

 In companies 
Managers can use mobile computers in, say, critical presentations to 

major customers. They can access the latest market share information. At a 
small recess, they can revise the presentation to take advantage of this 
information. They can communicate with the office about possible new 
offers and call meetings for discussing responds to the new proposals. 
Therefore, mobile computers can leverage competitive advantages. 

 Stock Information Collation/Control 
In environments where access to stock is very limited i.e.: factory 

warehouses. The use of small portable electronic databases accessed via a 
mobile computer would be ideal. Data collated could be directly written to 
a central database, via a CDPD network, which holds all stock information 
hence the need for transfer of data to the central computer at a later date is 
not necessary. This ensures that from the time that a stock count is 



 

completed, there is no inconsistency between the data input on the portable 
computers and the central database. 

 Credit Card Verification 
At Point of Sale (POS) terminals in shops and supermarkets, when 

customers use credit cards for transactions, the intercommunication 
required between the bank central computer and the POS terminal, in order 
to effect verification of the card usage, can take place quickly and securely 
over cellular channels using a mobile computer unit. This can speed up the 
transaction process and relieve congestion at the POS terminals. 

Taxi/Truck Dispatch 
 Using the idea of a centrally controlled dispatcher with several 

mobile units (taxis), mobile computing allows the taxis to be given full 
details of the dispatched job as well as allowing the taxis to communicate 
information about their whereabouts back to the central dispatch office. 
This system is also extremely useful in secure deliveries ie: Securicor. This 
allows a central computer to be able to track and receive status information 
from all of its mobile secure delivery vans. Again, the security and 
reliability properties of the CDPD system shine through. 

 

 

Fig. 15. Taxi Dispatch Network 

 



 

Electronic Mail/Paging 
Usage of a mobile unit to send and read emails is a very useful asset 

for any business individual, as it allows him/her to keep in touch with any 
colleagues as well as any urgent developments that may affect their work. 
Access to the Internet, using mobile computing technology, allows the 
individual to have vast arrays of knowledge at his/her fingertips. Paging is 
also achievable here, giving even more intercommunication capability 
between individuals, using a single mobile computer device. (4000) 

[https://www.brainkart.com/article/Mobile-Computing-Applications_9874/] 
 

3. Explain in your own words each type of the mobile applications 
described above  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

COMPUTER TERMS GLOSSARY 

abstraction. The separation of the logical properties of data or function from its 
implementation in a computer program. See: encapsulation, information hiding, 
software engineering. 
 

access time.  The time interval between the instant at which a call for data is initiated 
and the instant at which the delivery of the data is completed. 
 

accuracy. ) (1) A qualitative assessment of correctness or freedom from error. (2) A 
quantitative measure of the magnitude of error. Contrast with precision. (3) The 
measure of an instrument's capability to approach a true or absolute value. It is a 
function of precision and bias.  
 

algorithm.  (1) A finite set of well-defined rules for the solution of a problem in a 
finite number of steps. (2) Any sequence of operations for performing a specific task. 
 

analog device.  A device that operates with variables represented by continuously 
measured quantities such as pressures, resistances, rotations, temperatures, and 
voltages. 
 

application software.  Software designed to fill specific needs of a user; for 
example, software for navigation, payroll, or process control. Contrast with support 
software; system software. 
 

architectural design.  (1) The process of defining a collection of hardware and 
software components and their interfaces to establish the framework for the 
development of a computer system. (2) The result of the process in (1).  
 

archival database. An historical copy of a database saved at a significant point in 
time for use in recovery or restoration of the database. 
 

archive file.  A file that is part of a collection of files set aside for later research or 
verification, for security purposes, for historical or legal purposes, or for backup. 
 

arithmetic logic unit. The [high speed] circuits within the CPU which are 
responsible for performing the arithmetic and logical operations of a computer. 
 

array.  An n-dimensional ordered set of data items identified by a single name and 
one or more indices, so that each element of the set is individually addressable; e.g., a 
matrix, table, or vector. 
 

assembler.  A computer program that translates programs [source code files] written 
in assembly language into their machine language equivalents [object code files]. 
Contrast with compiler, interpreter.  
 

assembly language.  A low level programming language, that corresponds closely to 
the instruction set of a given computer, allows symbolic naming of operations and 



 

addresses, and usually results in a one-to-one translation of program instructions 
[mnemonics] into machine instructions. See: low-level language. 
 

asynchronous. Occurring without a regular time relationship, i.e., timing 
independent.   
 

BIOS. basic input/output system. 
 

BASIC. An acronym for Beginners All-purpose Symbolic Instruction Code, a high-
level programming language intended to facilitate learning to program in an 
interactive environment. 
 

basic input/output system. Firmware that activates peripheral devices in a PC. 
Includes routines for the keyboard, screen, disk, parallel port and serial port, and for 
internal services such as time and date. It accepts requests from the device drivers in 
the operating system as well from application programs. It also contains autostart 
functions that test the system on startup and prepare the computer for operation. It 
loads the operating system and passes control to it. 
 

batch processing. Execution of programs serially with no interactive processing. 
Contrast with real time processing. 
 

bias. A measure of how closely the mean value in a series of replicate measurements 
approaches the true value. See: accuracy, precision, calibration. 
 

binary. The base two number system. Permissible digits are "0" and "1". 
 

bit. A contraction of the term binary digit. The bit is the basic unit of digital data. It 
may be in one of two states, logic 1 or logic 0. 
 

block.  (1) A string of records, words, or characters that for technical or logical 
purposes are treated as a unity. (2) A collection of contiguous records that are 
recorded as a unit, and the units are separated by interblock gaps. (3) In programming 
languages, a subdivision of a program that serves to group related statements, delimit 
routines, specify storage allocation, delineate the applicability of labels, or segment 
parts of the program for other purposes. In FORTRAN, a block may be a sequence of 
statements; in COBOL, it may be a physical record. 
 

block diagram.  A diagram of a system, instrument or computer, in which the 
principal parts are represented by suitably annotated geometrical figures to show both 
the basic functions of the parts and the functional relationships between them. 
 

block length. (1) The number of records, words or characters in a block. (2) A 
measure of the size of a block, usually specified in units such as records, words, 
computer words, or characters. 
 

boot. (1) To initialize a computer system by clearing memory and reloading the 
operating system. (2) To cause a computer system to reach a known beginning state. 
  



 

bootstrap.  A short computer program that is permanently resident or easily loaded 
into a computer and whose execution brings a larger program, such an operating 
system or its loader, into memory. 
 

buffer. A device or storage area [memory] used to store data temporarily to 
compensate for differences in rates of data flow, time of occurrence of events, or 
amounts of data that can be handled by the devices or processes involved in the 
transfer or use of the data. 
 

bug. A fault in a program which causes the program to perform in an unintended or 
unanticipated manner. See: anomaly, defect, error, exception, fault. 
 

bus. A common pathway along which data and control signals travel between 
different hardware devices within a computer system.  
 

byte. A sequence of adjacent bits, usually eight, operated on as a unit. 
 

CAM. computer aided manufacturing. The automation of manufacturing systems and 
techniques, including the use of computers to communicate work instructions to 
automate machinery for the handling of the processing [numerical control, process 
control, robotics, material requirements planning] needed to produce a workpiece. 
 

CASE. computer aided software engineering. An automated system for the support of 
software development including an integrated tool set, i.e., programs, which facilitate 
the accomplishment of software engineering methods and tasks such as project 
planning and estimation, system and software requirements analysis, design of data 
structure, program architecture and algorithm procedure, coding, testing and 
maintenance. 
 

COTS. configurable, off-the-shelf software. Application software, sometimes general 
purpose, written for a variety of industries or users in a manner that permits users to 
modify the program to meet their individual needs. 
 

CPU. central processing unit. The unit of a computer that includes the circuits 
controlling the interpretation of program instructions and their execution. The CPU 
controls the entire computer. It receives and sends data through input-output 
channels, retrieves data and programs from memory, and conducts mathematical and 
logical functions of a program. 
 

C. A general purpose high-level programming language. Created for use in the 
development of computer operating systems software. It strives to combine the power 
of assembly language with the ease of a high-level language. 
 

C++. An object-oriented high-level programming language. 
 

change tracker. A software tool which documents all changes made to a program. 
 

client-server. A term used in a broad sense to describe the relationship between the 
receiver and the provider of a service. In the world of microcomputers, the term 



 

client-server describes a networked system where front-end applications, as the 
client, make service requests upon another networked system.  
 

COBOL. Acronym for COmmon Business Oriented Language. A high-level 
programming language intended for use in the solution of problems in business data 
processing. 
 

code audit.  An independent review of source code by a person, team, or tool to 
verify compliance with software design documentation and programming standards. 
  

code inspection.  A manual [formal] testing [error detection] technique where the 
programmer reads source code, statement by statement, to a group who ask questions 
analyzing the program logic, analyzing the code with respect to a checklist of 
historically common programming errors, and analyzing its compliance with coding 
standards.  
 

coding.  (1) In software engineering, the process of expressing a computer program 
in a programming language. (2) The transforming of logic and data from design 
specifications (design descriptions) into a programming language.  
 

comparator.  A software tool that compares two computer programs, files, or sets of 
data to identify commonalities or differences. Typical objects of comparison are 
similar versions of source code, object code, data base files, or test results. 
 

compatibility.  The capability of a functional unit to meet the requirements of a 
specified interface. 
 

compilation.  Translating a program expressed in a problem-oriented language or a 
procedure oriented language into object code. 
  

compiler. (1) A computer program that translates programs expressed in a high-level 
language into their machine language equivalents. (2) The compiler takes the finished 
source code listing as input and outputs the machine code instructions that the 
computer must have to execute the program.  
 

computer.  A functional unit that can perform substantial computations, including 
numerous arithmetic operations, or logic operations, without human intervention 
during a run.  
 

computer aided design. The use of computers to design products. CAD systems are 
high speed workstations or personal computers using CAD software and input 
devices such as graphic tablets and scanners to model and simulate the use of 
proposed products.  
 

computer language.  A language designed to enable humans to communicate with 
computers. See: programming language. 
 

computer system.  A functional unit, consisting of one or more computers and 
associated peripheral input and output devices, and associated software. 



 

configuration.  (1) The arrangement of a computer system or component as defined 
by the number, nature, and interconnections of its constituent parts. (2) In 
configuration management, the functional and physical characteristics of hardware or 
software as set forth in technical documentation or achieved in a product. 
 

control flow.  In programming languages, an abstraction of all possible paths that an 
execution sequence may take through a program. 
 

controller. Hardware that controls peripheral devices such as a disk or display 
screen. It performs the physical data transfers between main memory and the 
peripheral device. 
 

cross-compiler.  A compiler that executes on one computer but generates assembly 
code or object code for a different computer. 
 

DOS. disk operating system. 
 

data. Representations of facts, concepts, or instructions in a manner suitable for 
communication, interpretation, or processing by humans or by automated means. 
 

data analysis.  Evaluation of the data structure and usage in the code to ensure each 
is defined and used properly by the program. Usually performed in conjunction with 
logic analysis. 
 

data bus.  A bus used to communicate data internally and externally to and from a 
processing unit or a storage device.  
 

data element. (1) A named unit of data that, in some contexts, is considered 
indivisible and in other contexts may consist of data items. (2) A named identifier of 
each of the entities and their attributes that are represented in a database. 
 

data flow analysis.  A software V&V task to ensure that the input and output data 
and their formats are properly defined, and that the data flows are correct. 
 

data integrity.  The degree to which a collection of data is complete, consistent, and 
accurate.  
 

data set. A collection of related records. Syn: file. 
 

data structure.  A physical or logical relationship among data elements, designed to 
support specific data manipulation functions.  
 

data validation.  A process used to determine if data are inaccurate, incomplete, or 
unreasonable. The process may include format checks, completeness checks, check 
key tests, reasonableness checks and limit checks.  
 

database.  A collection of interrelated data, often with controlled redundancy, 
organized according to a schema to serve one or more applications. The data are 
stored so that they can be used by different programs without concern for the data 
structure or organization.  



 

dead code. Program code statements which can never execute during program 
operation. Such code can result from poor coding style, or can be an artifact of 
previous versions or debugging efforts. Dead code can be confusing, and is a 
potential source of erroneous software changes.  
 

debugging.  Determining the exact nature and location of a program error, and fixing 
the error. 
 

design. The process of defining the architecture, components, interfaces, and other 
characteristics of a system or component.  
 

design phase.  The period of time in the software life cycle during which the designs 
for architecture, software components, interfaces, and data are created, documented, 
and verified to satisfy requirements. 
 

design requirement.  A requirement that specifies or constrains the design of a 
system or system component. 
 

design standards.  Standards that describe the characteristics of a design or a design 
description of data or program components. 
 

developer. A person, or group, that designs and/or builds and/or documents and/or 
configures the hardware and/or software of computerized systems. 
 

development methodology.  A systematic approach to software creation that defines 
development phases and specifies the activities, products, verification procedures, 
and completion criteria for each phase.  
 

different software system analysis.  Analysis of the allocation of software 
requirements to separate computer systems to reduce integration and interface errors 
related to safety. Performed when more than one software system is being integrated. 
  

digital. Pertaining to data [signals] in the form of discrete integral values.  
 

disk operating system. An operating system program; e.g., DR-DOS from Digital 
Research, MS-DOS from Microsoft Corp., OS/2 from IBM, PC-DOS from IBM, 
System-7 from Apple. 
 

driver. A program that links a peripheral device or internal function to the operating 
system, and providing for activation of all device functions.  
 

dynamic analysis.  Analysis that is performed by executing the program code.  
 

editing. Modifying the content of the input by inserting, deleting, or moving 
characters, numbers, or data. 
 

embedded software.  Software that is part of a larger system and performs some of 
the requirements of that system; e.g., software used in an aircraft or rapid transit 
system. Such software does not provide an interface with the user. See: firmware. 
 



 

encapsulation.  A software development technique that consists of isolating a system 
function or a set of data and the operations on those data within a module and 
providing precise specifications for the module. 
 

end user. A person, device, program, or computer system that uses an information 
system for the purpose of data processing in information exchange.  
 

error.  A discrepancy between a computed, observed, or measured value or condition 
and the true, specified, or theoretically correct value or condition.  
 

error detection. Techniques used to identify errors in data transfers. See: check 
summation, cyclic redundancy check [CRC], parity check, longitudinal redundancy. 
 

execution trace.  A record of the sequence of instructions executed during the 
execution of a computer program. Often takes the form of a list of code labels 
encountered as the program executes.  
 

FTP. file transfer protocol. 
 

failure.  The inability of a system or component to perform its required functions 
within specified performance requirements.  
 

failure analysis. Determining the exact nature and location of a program error in 
order to fix the error, to identify and fix other similar errors, and to initiate corrective 
action to prevent future occurrences of this type of error.  
 

fault. An incorrect step, process, or data definition in a computer program which 
causes the program to perform in an unintended or unanticipated manner.  
 

file. (1)  A set of related records treated as a unit; e.g., in stock control, a file could 
consists of a set of invoices. (2) The largest unit of storage structure that consists of a 
named collection of all occurrences in a database of records of a particular record 
type.  
 

file maintenance.  The activity of keeping a file up to date by adding, changing, or 
deleting data. 
 

file transfer protocol. (1) Communications protocol that can transmit binary and 
ASCII data files without loss of data. See: Kermit, Xmodem, Ymodem, Zmodem. (2) 
TCP/IP protocol that is used to log onto the network, list directories, and copy files. It 
can also translate between ASCII and EBCDIC.  
 

firmware.  The combination of a hardware device; e.g., an IC; and computer 
instructions and data that reside as read only software on that device. Such software 
cannot be modified by the computer during processing.  
 

FORTRAN. An acronym for FORmula TRANslator, the first widely used high-level 
programming language. Intended primarily for use in solving technical problems in 
mathematics, engineering, and science. 
 



 

 

functional analysis.  Verifies that each safety-critical software requirement is 
covered and that an appropriate criticality level is assigned to each software element. 
 

functional configuration audit.  An audit conducted to verify that the development 
of a configuration item has been completed satisfactorily, that the item has achieved 
the performance and functional characteristics specified in the functional or allocated 
configuration identification, and that its operational and support documents are 
complete and satisfactory.  
 

gigabyte. Approximately one billion bytes; precisely 230 or 1,073,741,824 bytes. 
  

graph.  A diagram or other representation consisting of a finite set of nodes and 
internode connections called edges or arcs.  
 

graphic software specifications. Documents such as charts, diagrams, graphs which 
depict program structure, states of data, control, transaction flow, HIPO, and cause-
effect relationships; and tables including truth, decision, event, state-transition, 
module interface, exception conditions/responses necessary to establish design 
integrity. 
 

hardware.  Physical equipment, as opposed to programs, procedures, rules, and 
associated documentation.  
 

high-level language. A programming language which requires little knowledge of 
the target computer, can be translated into several different machine languages, 
allows symbolic naming of operations and addresses, provides features designed to 
facilitate expression of data structures and program logic, and usually results in 
several machine instructions for each program statement. Examples are PL/1, 
COBOL, BASIC, FORTRAN, Ada, Pascal, and "C".  
 

I/0. input/output. 
 

ISO. International Organization for Standardization. 
 

implementation. The process of translating a design into hardware components, 
software components, or both.  
 

implementation phase.  The period of time in the software life cycle during which a 
software product is created from design documentation and debugged. 
 

implementation requirement.  A requirement that specifies or constrains the coding 
or construction of a system or system component. 
 

incremental development.  A software development technique in which 
requirements definition, design, implementation, and testing occur in an overlapping, 
iterative [rather than sequential] manner, resulting in incremental completion of the 
overall software product.  
 



 

information hiding. The practice of "hiding" the details of a function or structure, 
making them inaccessible to other parts of the program. 
  

input/output. Each microprocessor and each computer needs a way to communicate 
with the outside world in order to get the data needed for its programs and in order to 
communicate the results of its data manipulations. This is accomplished through I/0 
ports and devices. 
 

installation.  The phase in the system life cycle that includes assembly and testing of 
the hardware and software of a computerized system. Installation includes installing a 
new computer system, new software or hardware, or otherwise modifying the current 
system. 
 

installation and checkout phase.  The period of time in the software life cycle 
during which a software product is integrated into its operational environment and 
tested in this environment to ensure that it performs as required. 
 

instruction. (1) program statement that causes a computer to perform a particular 
operation or set of operations. (2) In a programming language, a meaningful 
expression that specifies one operation and identifies its operands, if any. 
 

integrated circuit (IC). Small wafers of semiconductor material [silicon] etched or 
printed with extremely small electronic switching circuits. Syn: chip. 
 

interface. A shared boundary between two functional units, defined by functional 
characteristics, common physical interconnection characteristics, signal 
characteristics, and other characteristics, as appropriate. The concept involves the 
specification of the connection of two devices having different functions.  
 

interpret.  To translate and execute each statement or construct of a computer 
program before translating and executing the next.  
 

interpreter. A computer program that translates and executes each statement or 
construct of a computer program before translating and executing the next. The 
interpreter must be resident in the computer each time a program [source code file] 
written in an interpreted language is executed.  
 

invalid inputs. Test data that lie outside the domain of the function the program 
represents. 
 

KB. kilobyte. Approximately one thousand bytes. This symbol is used to describe the 
size of computer memory or disk storage space. Because computers use a binary 
number system, a kilobyte is precisely 210 or 1024 bytes. 
 

key element. An individual step in an critical control point of the manufacturing 
process. 
 



 

 

life cycle methodology. The use of any one of several structured methods to plan, 
design, implement, test. and operate a system from its conception to the termination 
of its use. See: waterfall model. 
 

linkage editor.  A computer program that creates a single load module from two or 
more independently translated object modules or load modules by resolving cross 
references among the modules and, possibly, by relocating elements. Syn: link editor  
 

loader. A program which copies other [object] programs from auxiliary [external] 
memory to main [internal] memory prior to its execution. 
 

low-level language.  The advantage of assembly language is that it provides bit-level 
control of the processor allowing tuning of the program for optimal speed and 
performance. For time critical operations, assembly language may be necessary in 
order to generate code which executes fast enough for the required operations. The 
disadvantage of assembly language is the high-level of complexity and detail required 
in the programming. This makes the source code harder to understand, thus 
increasing the chance of introducing errors during program development and 
maintenance. 
 

Mb. megabit. Approximately one million bits. Precisely 1024 K bits, 220 bits, or 
1,048,576 bits. 
 

MB. megabyte. Approximately one million bytes. Precisely 1024 K Bytes, 220 bytes, 
or 1,048,576 bytes. See: kilobyte. 
 

MIPS. million instructions per second. 
 

machine code.  Computer instructions and definitions expressed in a form [binary 
code] that can be recognized by the CPU of a computer. All source code, regardless 
of the language in which it was programmed, is eventually converted to machine 
code. Syn: object code. 
 

macroinstruction.  A source code instruction that is replaced by a predefined 
sequence of source instructions, usually in the same language as the rest of the 
program and usually during assembly or compilation. 
 

main memory. A non-moving storage device utilizing one of a number of types of 
electronic circuitry to store information. 
 

main program.  A software component that is called by the operating system of a 
computer and that usually calls other software components. See: routine, subprogram. 
 

maintenance.  Activities such as adjusting, cleaning, modifying, overhauling 
equipment to assure performance in accordance with requirements. Maintenance to a 
software system includes correcting software errors, adapting software to a new 
environment, or making enhancements to software.  
 



 

measure.  A quantitative assessment of the degree to which a software product or 
process possesses a given attribute. 
 

megahertz. A unit of frequency equal to one million cycles per second. 
 

memory. Any device or recording medium into which binary data can be stored and 
held, and from which the entire original data can be retrieved.  
 

menu. A computer display listing a number of options; e.g., functions, from which 
the operator may select one. Sometimes used to denote a list of programs. 
 

metric, software quality.  A quantitative measure of the degree to which software 
possesses a given attribute which affects its quality. 
 

microcode. Permanent memory that holds the elementary circuit operations a 
computer must perform for each instruction in its instruction set. 
 

microprocessor. A CPU existing on a single IC. Frequently synonymous with a 
microcomputer. 
 

modeling. Construction of programs used to model the effects of a postulated 
environment for investigating the dimensions of a problem for the effects of 
algorithmic processes on responsive targets. 
 

module. (1) In programming languages, a self- contained subdivision of a program 
that may be separately compiled. (2) A discrete set of instructions, usually processed 
as a unit, by an assembler, a compiler, a linkage editor, or similar routine or 
subroutine. (3) A packaged functional hardware unit suitable for use with other 
components. See: unit. 
 

multi-processing.  A mode of operation in which two or more processes [programs] 
are executed concurrently [simultaneously] by separate CPUs that have access to a 
common main memory. Contrast with multi-programming.  
 

multi-programming.  A mode of operation in which two or more programs are 
executed in an interleaved manner by a single CPU. 
 

multi-tasking.  A mode of operation in which two or more tasks are executed in an 
interleaved manner.  
 

network. (1)  An arrangement of nodes and interconnecting branches. (2) A system 
[transmission channels and supporting hardware and software] that connects several 
remotely located computers via telecommunications. 
 

OOP. object oriented programming. A technology for writing programs that are 
made up of self-sufficient modules that contain all of the information needed to 
manipulate a given data structure. The modules are created in class hierarchies so that 
the code or methods of a class can be passed to other modules. New object modules 
can be easily created by inheriting the characteristics of existing classes. 
 



 

object. In object oriented programming, A self contained module [encapsulation] of 
data and the programs [services] that manipulate [process] that data. 
 

object code. A code expressed in machine language ["1"s and "0"s] which is 
normally an output of a given translation process that is ready to be executed by a 
computer.  
 

object oriented design. A software development technique in which a system or 
component is expressed in terms of objects and connections between those objects. 
 

object oriented language.  A programming language that allows the user to express 
a program in terms of objects and messages between those objects. Examples include 
C++, Smalltalk and LOGO. 
 

object program. A computer program that is the output of an assembler or compiler. 
 

operating system.  Software that controls the execution of programs, and that 
provides services such as resource allocation, scheduling, input/output control, and 
data management. Usually, operating systems are predominantly software, but partial 
or complete hardware implementations are possible. 
 

Oracle. A relational database programming system incorporating the SQL 
programming language. A registered trademark of the Oracle Corp. 
 

original equipment manufacturer. A manufacturer of computer hardware. 
 

PROM. programmable read only memory. 
 

parallel. (1)  Pertaining to the simultaneity of two or more processes. (2) Pertaining 
to the simultaneous processing of individual parts of a whole, such as the bits of a 
character or the characters of a word, using separate facilities for the various parts. 
(3) Term describing simultaneous transmission of the bits making up a character, 
usually eight bits [one byte].  
 

parallel processing. See: multi-processing, multi- programming. 
 

parameter.  A constant, variable or expression that is used to pass values between 
software modules.  
 

parity. An error detection method in data transmissions that consists of selectively 
adding a 1-bit to bit patterns [word, byte, character, message] to cause the bit patterns 
to have either an odd number of 1-bits [odd parity] or an even number of 1-bits [even 
parity]. 
 

Pascal. A high-level programming language designed to encourage structured 
programming practices. 
 

path.  A sequence of instructions that may be performed in the execution of a 
computer program. 
 



 

 

peripheral device. Equipment that is directly connected a computer. A peripheral 
device can be used to input data; e.g., keypad, bar code reader, transducer, laboratory 
test equipment; or to output data; e.g., printer, disk drive, video system, tape drive, 
valve controller, motor controller. Syn: peripheral equipment. 
 

pixel.  (1) In image processing and pattern recognition, the smallest element of a 
digital image that can be assigned a gray level. (2) In computer graphics, the smallest 
element of a display surface that can be assigned independent characteristics. This 
term is derived from the term "picture element". 
 

platform. The hardware and software which must be present and functioning for an 
application program to run [perform] as intended. A platform includes, but is not 
limited to the operating system or executive software, communication software, 
microprocessor, network, input/output hardware, any generic software libraries, 
database management, user interface software, and the like. 
 

program.  A sequence of instructions suitable for processing. Processing may 
include the use of an assembler, a compiler, an interpreter, or another translator to 
prepare the program for execution. The instructions may include statements and 
necessary declarations.  
 

program design language.  A specification language with special constructs and, 
sometimes, verification protocols, used to develop, analyze, and document a program 
design. 
 

programmable logic device. A logic chip that is programmed at the user's site.  
 

programmable read only memory. A chip which may be programmed by using a 
PROM programming device. It can be programmed only once. It cannot be erased 
and reprogrammed. Each of its bit locations is a fusible link.  
 

programming language. A language used to express computer programs.  
 

PROM programmer. Electronic equipment which is used to transfer a program 
[write instructions and data] into PROM and EPROM chips. 
 

protocol.  A set of semantic and syntactic rules that determines the behavior of 
functional units in achieving communication. 
 

prototyping. Using software tools to accelerate the software development process by 
facilitating the identification of required functionality during analysis and design 
phases. A limitation of this technique is the identification of system or software 
problems and hazards.  
 

pseudocode. A combination of programming language and natural language used to 
express a software design. If used, it is usually the last document produced prior to 
writing the source code. 
 



 

 

qualification, operational.  Establishing confidence that process equipment and sub-
systems are capable of consistently operating within established limits and tolerances. 
 

qualification, process performance. Establishing confidence that the process is 
effective and reproducible. 
 

RAM. random access memory. Chips which can be called read/write memory, since 
the data stored in them may be read or new data may be written into any memory 
address on these chips. The term random access means that each memory location 
[usually 8 bits or 1 byte] may be directly accessed [read from or written to] at 
random. 
 

ROM. read only memory. A memory chip from which data can only be read by the 
CPU. The CPU may not store data to this memory. The advantage of ROM over 
RAM is that ROM does not require power to retain its program. This advantage 
applies to all types of ROM chips; ROM, PROM, EPROM, and EEPROM. 
 

real time.  Pertaining to a system or mode of operation in which computation is 
performed during the actual time that an external process occurs, in order that the 
computation results can be used to control, monitor, or respond in a timely manner to 
the external process. Contrast with batch. See: conversational, interactive, interrupt, 
on-line. 
 

real time processing. A fast-response [immediate response] on-line system which 
obtains data from an activity or a physical process, performs computations, and 
returns a response rapidly enough to affect [control] the outcome of the activity or 
process; e.g., a process control application. Contrast with batch processing. 
 

record. (1)  a group of related data elements treated as a unit. [A data element (field) 
is a component of a record, a record is a component of a file (database)]. 
relational database. Database organization method that links files together as 
required. Relationships between files are created by comparing data such as account 
numbers and names. A relational system can take any two or more files and generate 
a new file from the records that meet the matching criteria. 
 

reliability.  The ability of a system or component to perform its required functions 
under stated conditions for a specified period of time.  
 

requirement.  (1) A condition or capability needed by a user to solve a problem or 
achieve an objective. (2) A condition or capability that must be met or possessed by a 
system or system component to satisfy a contract, standard, specification, or other 
formally imposed documents. (3) A documented representation of a condition or 
capability as in (1) or (2).  
 

requirements phase.  The period of time in the software life cycle during which the 
requirements, such as functional and performance capabilities for a software product, 
are defined and documented. 
 



 

robustness. The degree to which a software system or component can function 
correctly in the presence of invalid inputs or stressful environmental conditions. See: 
software reliability. 
 

routine.  A subprogram that is called by other programs and subprograms. Note: This 
term is defined differently in various programming languages.  
 

SOPs. standard operating procedures. 
 

SQL. structured query language. 
 

safety.  Freedom from those conditions that can cause death, injury, occupational 
illness, or damage to or loss of equipment or property, or damage to the environment. 
 

server. A high speed computer in a network that is shared by multiple users. It holds 
the programs and data that are shared by all users. 
 

simulation. (1) Use of an executable model to represent the behavior of an object. 
During testing the computational hardware, the external environment, and even code 
segments may be simulated. (2) A model that behaves or operates like a given system 
when provided a set of controlled inputs. Contrast with emulation. 
 

software.  Programs, procedures, rules, and any associated documentation pertaining 
to the operation of a system.  
 

software characteristic. An inherent, possibly accidental, trait, quality, or property 
of software; e.g., functionality, performance, attributes, design constraints, number of 
states, lines or branches. 
 

software design description. A representation of software created to facilitate 
analysis, planning, implementation, and decision making. The software design 
description is used as a medium for communicating software design information, and 
may be thought of as a blueprint or model of the system.  
 

software development process. The process by which user needs are translated into 
a software product. the process involves translating user needs into software 
requirements, transforming the software requirements into design, implementing the 
design in code, testing the code, and sometimes installing and checking out the 
software for operational activities.  
 

software documentation.  Technical data or information, including computer listings 
and printouts, in human readable form, that describe or specify the design or details, 
explain the capabilities, or provide operating instructions.  
 

software element.  A deliverable or in- process document produced or acquired 
during software development or maintenance.  
 



 

software engineering.  The application of a systematic, disciplined, quantifiable 
approach to the development, operation, and maintenance of software; i.e., the 
application of engineering to software.  
 

software item.  Source code, object code, job control code, control data, or a 
collection of these items. Contrast with software element. 
 

software life cycle.  Period of time beginning when a software product is conceived 
and ending when the product is no longer available for use. The software life cycle is 
typically broken into phases denoting activities such as requirements, design, 
programming, testing, installation, and operation and maintenance.  
 

software reliability.  (1) the probability that software will not cause the failure of a 
system for a specified time under specified conditions. The probability is a function 
of the inputs to and use of the system in the software. The inputs to the system 
determine whether existing faults, if any, are encountered. (2) The ability of a 
program to perform its required functions accurately and reproducibly under stated 
conditions for a specified period of time. 
 

source code. (1) Computer instructions and data definitions expressed in a form 
suitable for input to an assembler, compiler or other translator. (2) The human 
readable version of the list of instructions [program] that cause a computer to perform 
a task.  
 

source program.  A computer program that must be compiled, assembled, or 
otherwise translated in order to be executed by a computer. See: source code. 
 

specification.  A document that specifies, in a complete, precise, verifiable manner, 
the requirements, design, behavior,or other characteristics of a system or component, 
and often, the procedures for determining whether these provisions have been 
satisfied. 
 

specification, product.  A document which describes the as built version of the 
software. 
 

specification, requirements.  A specification that documents the requirements of a 
system or system component. It typically includes functional requirements, 
performance requirements, interface requirements, design requirements [attributes 
and constraints], development [coding] standards, etc.  
 

spiral model.  A model of the software development process in which the constituent 
activities, typically requirements analysis, preliminary and detailed design, coding, 
integration, and testing, are performed iteratively until the software is complete. 
 

standard operating procedures. Written procedures [prescribing and describing the 
steps to be taken in normal and defined conditions] which are necessary to assure 
control of production and processes. 
 



 

 

storage device. A unit into which data or programs can be placed, retained and 
retrieved.  
 

structured programming.  Any software development technique that includes 
structured design and results in the development of structured programs.  
 

structured query language. A language used to interrogate and process data in a 
relational database. Originally developed for IBM mainframes, there have been many 
implementations created for mini and micro computer database applications. SQL 
commands can be used to interactively work with a data base or can be embedded 
with a programming language to interface with a database. 
 

subprogram.  A separately compilable, executable component of a computer 
program. Note: This term is defined differently in various programming languages. 
  
subroutine.  A routine that returns control to the program or subprogram that called 
it. Note: This term is defined differently in various programming languages. 
 

support software.  Software that aids in the development and maintenance of other 
software; e.g., compilers, loaders, and other utilities. 
 

syntax. The structural or grammatical rules that define how symbols in a language 
are to be combined to form words, phrases, expressions, and other allowable 
constructs. 
 

system analysis. A systematic investigation of a real or planned system to determine 
the functions of the system and how they relate to each other and to any other system. 
  

system design. A process of defining the hardware and software architecture, 
components, modules, interfaces, and data for a system to satisfy specified 
requirements.  
 

system life cycle. The course of developmental changes through which a system 
passes from its conception to the termination of its use; e.g., the phases and activities 
associated with the analysis, acquisition, design, development, test, integration, 
operation, maintenance, and modification of a system. See: software life cycle. 
 

system software. (1)  Application- independent software that supports the running of 
application software. (2)  Software designed to facilitate the operation and 
maintenance of a computer system and its associated programs; e.g., operating 
systems, assemblers, utilities.  
 

terminal. A device, usually equipped with a CRT display and keyboard, used to send 
and receive information to and from a computer via a communication channel. 
 

test. An activity in which a system or component is executed under specified 
conditions, the results are observed or recorded and an evaluation is made of some 
aspect of the system or component. 
 



 

test phase.  The period of time in the software life cycle in which the components of 
a software product are evaluated and integrated, and the software product is evaluated 
to determine whether or not requirements have been satisfied. 
 

test procedure.  A formal document developed from a test plan that presents detailed 
instructions for the setup, operation, and evaluation of the results for each defined 
test.  
 

testing.  (1) The process of operating a system or component under specified 
conditions, observing or recording the results, and making an evaluation of some 
aspect of the system or component. (2) The process of analyzing a software item to 
detect the differences between existing and required conditions, i.e. bugs, and to 
evaluate the features of the software items.  
 

testing, compatibility. The process of determining the ability of two or more systems 
to exchange information. In a situation where the developed software replaces an 
already working program, an investigation should be conducted to assess possible 
comparability problems between the new software and other programs or systems 
 

testing, unit. (1)  Testing of a module for typographic, syntactic, and logical errors, 
for correct implementation of its design, and for satisfaction of its requirements. (2) 
Testing conducted to verify the implementation of the design for one software 
element; e.g., a unit or module; or a collection of software elements.  
 

time sharing. A mode of operation that permits two or more users to execute 
computer programs concurrently on the same computer system by interleaving the 
execution of their programs. May be implemented by time slicing, priority-based 
interrupts, or other scheduling methods. 
 

top-down design. Pertaining to design methodology that starts with the highest level 
of abstraction and proceeds through progressively lower levels. 
 

transaction. (1) A command, message, or input record that explicitly or implicitly 
calls for a processing action, such as updating a file. (2) An exchange between and 
end user and an interactive system. (3) In a database management system, a unit of 
processing activity that accomplishes a specific purpose such as a retrieval, an 
update, a modification, or a deletion of one or more data elements of a storage 
structure. 
 

unambiguous. (1) Not having two or more possible meanings. (2) Not susceptible to 
different interpretations. (3) Not obscure, not vague. (4) Clear, definite, certain. 
 

unit.  (1) A separately testable element specified in the design of a computer software 
element. (2) A logically separable part of a computer program. Syn:  module. 
 

UNIX. A multitasking, multiple-user (time-sharing) operating system developed at 
Bell Labs to create a favorable environment for programming research and 
development. 
 



 

utility program.  A computer program in general support of the processes of a 
computer; e.g., a diagnostic program, a trace program, a sort program.  
 

utility software.  Computer programs or routines designed to perform some general 
support function required by other application software, by the operating system, or 
by the system users. They perform general functions such as formatting electronic 
media, making copies of files, or deleting files. 
 

VV&T. validation, verification, and testing. 
 

valid input.  Test data that lie within the domain of the function represented by the 
program. 
 

validation. (1)  Establishing documented evidence which provides a high degree of 
assurance that a specific process will consistently produce a product meeting its 
predetermined specifications and quality attributes.  
 

validation, software.  Determination of the correctness of the final program or 
software produced from a development project with respect to the user needs and 
requirements. Validation is usually accomplished by verifying each stage of the 
software development life cycle. 
 

verification, software.  In general the demonstration of consistency, completeness, 
and correctness of the software at each stage and between each stage of the 
development life cycle. See: validation, software. 
 

virus. A program which secretly alters other programs to include a copy of itself, and 
executes when the host program is executed. The execution of a virus program 
compromises a computer system by performing unwanted or unintended functions 
which may be destructive.  
 

WAN. wide area network. 
 

watchdog timer.  A form of interval timer that is used to detect a possible 
malfunction. 
 

 

 

 

 

 

 

 

 



 

 

CONCLUSION 

 

The manual “Professional English for Software Developers” supplies 
the key lexical and grammatical material for teaching and learning English 
for specific purposes  in IT sphere of specialization.  

The teacher’s work with “Professional English for Software 
Development”  and the assessment of students’ knowledge have shown its 
conformity to real interests, psychological needs and abilities of the senior 
and graduate students of Ufa State Aviation Technical University. The 
proposed textbook is considered as a means of optimizing the learning 
process of foreign language professional communication of the students 
and graduate students. It has been complied according to the State 
Educational Standard and requirements of the foreign language program 
for technical universities. 

Various tasks, dialogues, role-plays and topics suggested for 
presentations and discussions proved to be the effective means for 
improving language and social and cultural skills in different kinds of 
speech activity. As we can see this  textbook is designed to work under the 
guidance of a teacher who organizes the educational process in the 
classroom and selects tasks for independent extracurricular work. 

We hope that  ‘Professional English for Software Developers ’ will be 
interesting and useful in mastering students’ language proficiency. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

REFERENCES AND INFORMATION RESOURCES 

 

1. What is Software Engineering? [Электронный ресурс]: –  
URL: https://www.castsoftware.com/glossary/what-is-software-engineering-
definition-types-of-basics-introduction (дата обращения 20.02.22) 

2. Software. [Электронный ресурс]: –  
URL: https://searchapparchitecture.techtarget.com/definition/software (дата 
обращения 25.02.22) 

3. Operating system, its Functions and Characteristics. [Электронный ресурс]: – 
URL: https://medium.com/computing-technology-with-it-
fundamentals/operating-system-its-functions-and-characteristics-
c0946e4215c6 (дата обращения 28.02.22) 

4. Types of Operating Systems. [Электронный ресурс]: –  
URL: https://searchapparchitecture.techtarget.com/definition/software  
(дата обращения 28.02.22) 

5. Types of Operating Systems. [Электронный ресурс]: –  
URL: https://www.tutorialspoint.com/operating_system/os_types.htm  
(дата обращения 1.03.22) 

6. Software and its types. [Электронный ресурс]: –  
URL:  https://www.geeksforgeeks.org/software-and-its-types.htm  
(дата обращения 3.03.22) 

7. Coding vs  Programming: Top  Differences. [Электронный ресурс]: –  
URL:   https://www.lighthouselabs.ca/en/blog/coding-vs-programming  
(дата обращения 3.03.22) 

8. The first intuitive programming language for quantum computers.  
[Электронный ресурс]: –  
URL:  https://www.sciencedaily.com/releases/2020/06/200615115820.htm  
(дата обращения 28.02.22) 

9. How the brain is programmed for computer programming?  
[Электронный ресурс]: –  
URL:   https://www.sciencedaily.com/releases/2021/01/210128094229.htm 
(дата обращения 8.03.22) 

10. Ian Sommerville. Software Engineering. Tenth Edition. Pearson. 2016. – 
PP.200-210. 

11. Software Engineering Discussion. [Электронный ресурс]: –  
URL:   https://www.goodreads.com/topic/show/18012721-how-to-become-an-
expert-software-engineer-and-get-any-job-you-want (дата обращения 7.04.22) 

12. Programming Languages. [Электронный ресурс]: –  
URL:   https://en.wikipedia.org/wiki/Programming_language (дата обращения 
8.03.22) 

13. Introduction to programming. [Электронный ресурс]: – URL:     
https://www.bbc.co.uk/bitesize/guides/zts8d2p/test (дата обращения 14.03.22) 

14. Definition: object-oriented programming. [Электронный ресурс]: –  



 

URL:   https://www.computerlanguage.com/ results.php?definition=object-
oriented+programming  (дата обращения 24.03.22) 

15. Computer Programming Language. [Электронный ресурс]: –  
URL:   https://www.britannica.com/technology/computer-programming-
language/ (дата обращения 24.03.22) 

16. TypeScript for the New Programmer. [Электронный ресурс]: –  
URL:   https://www.typescriptlang.org/docs/handbook/typescript-from-
scratch.html (дата обращения 20.03.22) 

17. Visual Basic. [Электронный ресурс]: –  
URL:   https://www.britannica.com/technology/computer-programming-
language/Visual-Basic. (дата обращения 20.03.22) 

18. Data Structures Tutorial. [Электронный ресурс]: –  
URL:   https://www.javatpoint.com/data-structure-tutorial (дата обращения 
25.03.22) 

19. C Sharp (programming language). [Электронный ресурс]: –  
URL:    https://en.wikipedia.org/wiki/C_Sharp_(programming_language)  
(дата обращения 1.04.22) 

20. Web Development. [Электронный ресурс]: – URL:      
https://en.wikipedia.org/wiki/Web_development#:~:text=Web%20developmen
t,-From%20Wikipedia%2C%20the (дата обращения 1.04.22) 

21. What is web development? [Электронный ресурс]: –  
URL:      https://careerfoundry.com/en/blog/web-development/  
(дата обращения 11.04.22) 

22. The Anatomy of a Web Page: 14 Basic Elements. [Электронный ресурс]: – 
URL:        https://blog.tubikstudio.com/anatomy-of-web-page/  
(дата обращения 1.04.22) 

23. What is Application Development? - 3 Main Types of Application 
Development Methodologies. [Электронный ресурс]: –  
URL: https://kissflow.com/low-code/rad/types-of-application-development-
methodologies (дата обращения 3.04.22) 

24. Английский язык. Информационные технологии = English for  
Information Technology: учебное пособие для студентов технических и 
инженерно-экономических специальностей / И. Ю. Ваник, О. А. Лапко, 
Н. В. Сурунтович. – Минск : БНТУ, 2016. – 157 с. 

25. Language types. [Электронный ресурс]: – URL: 
https://www.britannica.com/technology/computer-programming-language 
(дата обращения 3.04.22) 

26. Game Engine. [Электронный ресурс]: – URL: 
https://en.wikipedia.org/wiki/Game_engine (дата обращения 23.02.22) 

27. Artificial Intelligence. [Электронный ресурс]: –  
URL: https://www.techtarget.com/searchenterpriseai/definition/AI-Artificial-
Intelligence (дата обращения 23.03.22) 



 

28. Language Types. Education-Oriented Languages. [Электронный ресурс]: – 
URL: https://www.britannica.com/technology/computer-programming-
language (дата обращения 23.04.22) 

29. What is OOAD(Object-oriented analysis and design)? [Электронный 
ресурс]: – URL: https://www.brainkart.com/article/What-is-OOAD(Object-
oriented-analysis-and-design)-_9969/(дата обращения 23.04.22) 

30. Rendering (computer graphics). [Электронный ресурс]: –  
URL: https://en.wikipedia.org/wiki/Rendering_(computer_graphics)  
(дата обращения 5.04.22) 

31. Understanding the Four Types of Artificial Intelligence. [Электронный 
ресурс]: – URL: https://www.govtech.com/computing/understanding-the-four-
types-of-artificial-intelligence.html (дата обращения 16.04.22) 

32. Linux System - Basic Concepts. [Электронный ресурс]: –  
URL: https://www.brainkart.com/article/Linux-System---Basic-
Concepts_9864/ (дата обращения 7.04.22) 

33. A Developer’s Guide to Communicating With Clients. [Электронный 
ресурс]: – URL:  https://inchoo.net/life-at-inchoo/developers-guide-
communicating-clients/ (дата обращения 30.03.22) 

34. Object-Oriented-Programming. [Электронный ресурс]: –  
URL:  https://www.brainkart.com/article/Object-Oriented-
Programming_10384/ (дата обращения 30.03.22) 

35. Role of process in software quality. [Электронный ресурс]: –  
URL:  https://www.brainkart.com/article/Role-of-process-in-software-
quality_9136/ (дата обращения 1.04.22) 

36. Mobile Computing Applications. [Электронный ресурс]: –  
URL:  https://www.brainkart.com/article/Mobile-Computing-
Applications_9874/ (дата обращения 10.04.22) 

37. Англо-русский и русско-английский словарь. [Электронный ресурс]: – 
URL:   https://www.multitran.com/ 

38. Computer Glossary. [Электронный ресурс]: –  
URL:   https://www.tutorialspoint.com/computer_glossary.htm 

 
 
 

 
 
 
 
 
 
 
 
 
 


	PROFESSIONAL ENGLISH

FOR SOFTWARE DEVELOPERS
	PREFACE
	UNIT 1. Introduction to Software Engineering
	UNIT 2. What is Software? Types of Software
	UNIT 3. Operating System
	UNIT 4. What is Computer Programming? Coding vs. Programming
	UNIT 5. Programming Languages
	UNIT 6. Object-oriented Programming (OOP)
	UNIT 7. Elements of Programming. Control Structures
	UNIT 8. Elements of Programming. Data Structures
	UNIT 9. Web – Development. Types of Web – development
	UNIT 10. Some Basic Elements of a Web Page
	UNIT 11. Application Development and Types of Application Development Methodologies
	UNIT 12. Game Engine
	COMPUTER TERMS GLOSSARY
	CONCLUSION
	REFERENCES AND INFORMATION RESOURCES



