HU. B. KHPCAHOBA

PROFESSIONAL ENGLISH
FOR SOFTWARE DEVELOPERS

Yoa 2022

MUHHCTEPCTBO HAYKU M BbICcLIero o6pa3oBaHus Poccuinickont Penepanuu
denepasibHOE TOCYAPCTBEHHOE OIO/P)KETHOE
06pa3oBaTesIbHOE yUpeXx/eHUe BbICIIero 0opa3oBaHus
«YPUMCKHUI rocylapCTBEHHbIM aBUALIMOHHbIA TEXHUYECKHUN YHUBEPCUTET»

U. B. KHPCAHOBA

PROFESSIONAL ENGLISH
FOR SOFTWARE DEVELOPERS

JonyweHo PedakyuoHHo-uzdameavckum coeemom YITATY
8 Kayecmeae yuebH020 nocobus 0151 cCmydeHmo8 0YHOU U 3a0YHOU OpM 06y4YeHUS,
06y4arwuxcsi N0 HaNpPas1eHu N0020mosKuU 6aKka.1a8po8 U Ma2ucmpaHmo8s
09.03.04, 09.04.04 IIpoepammHas UHHCEHEPUS

Yyeb6HOE JJIEKTPOHHOE U3JdHHE CETEBOI'0O AOCTYIIA

© YTATY
ISBN 978-5-4221-1597-6

Ya 2022

PeyeHnzeHmeol:
dekaH pakysabmema mamemamuku U UHPOPMAYUOHHbIX mexHoa02ull bawl'y
0-p pus.-mam. Hayk, npogeccop 3. F0. DazyanuH;
doyeHm kagedpsl pycCKO20 5A3bIKA U UHOCMPAHHbIX 3bIKO8
I'BOY BO «BATI'CY» npu I'nase Pecnybauku bawkopmocmaH
KaHO. gpuson. Hayk B. P. ['a6dyaiuHa

Kupcanosa H. B.

Professional english for software developers : y4yeb6HOe mocobue
[/1ekTpoHHBbIN pecypc] / YouMck. roc. aBuall,. TexH. yH-T. - Yda : YI'ATY, 2022. -
URL: https://www.ugatu.su/media/uploads/MainSite/Ob%?20universitete/

Izdateli/ El_izd /2022-117.pdf

[IlpeagHa3HayeHO [Ji1 COBEpIIEHCTBOBAHUSI pevyeBbIX HABBIKOB U
pPa3BUTUSI yMEHHUH NpoPecCUMOHAJbHO-OPUEHTHPOBAHHOTO HHOSI3bIYHOTO
0011leHUsI B YyCTHOU U MUCbMEHHOU popMax, YTEHUS U IlepeBo/ia OPUTMHAJIbHbBIX
AHTJIMMUCKHUX TEKCTOB, COOTBETCTBYWOIIMX HaNpaBJEHUIO MOJATOTOBKH
IT-cnenanuctoB. TeKCcTbl CHabGXeHbl YHpPaXKHEHUSIMH C HCIO0JIb30BAaHUEM
3JIeMEHTOB (PYHKIMOHAJIbHO-KOMMYHHUKATUBHOIO OOY4YeHUSI aHTJIUKWCKOMY
A3bIKy, a TaKXe CCbLJIKAMM Ha BHJeOMaTepuasjbl W 33aJaHUAMMU i
CaMOCTOSITEJIbHOU pabOoThl CTYAEHTOB.

[IlpefHasHayeHO /i CTYJEeHTOB M MAarucCTpPaHTOB, HM3y4alol[UX
JucuunanHy «MHoCTpaHHBIA 63bIK B NPOPecCUOHATbHOU JesTeJbHOCTU,
a TakKxXe JJisl CTy[leHTOB, CBSI3aHHbIX C UHGOPMAIMOHHBIMU TE€XHOJIOTUSIMHU.

[Ipy noAroTOBKE 3JIEKTPOHHOT'O U3JAHUS UCII0JIb30BAIMCh CEAYIOLIME
nporpaMMHbIe Cpe/ICTBA:

e Adobe Acrobat — TEKCTOBBIN peJJaKTOP;

e Microsoft Word - TekcTOBbIN peaKTOpP.

ABTtop: Kupcanosa UHHa BavecaasosHa

PenaktupoBanue v Bepctka: 0. A. Cokos08a
[IporpaMmMupoBaHue U KOMNBIOTEPHBIX Anu3anH: 0.M. Toakauyésa

Bce npasa 3awuwensi. Knuea unu miobas ee uacms e Modicem Obimb CKONUPOBAHA,
60CNPOU36E0EHA 8 DNIEKIMPOHHOU UNU MEXAHUYECKOU (opMme, 8 8ude homoxonuu,
sanucu 6 namame IBM, penpodykyuu unu Kakum-1ubo uHblM cnocoboM, a maxHce
UCTIONL306AHA 8 MT000U UHGOPMAYUOHHOU cucmeme Oe3 NOTYUeHUs pa3pelteHuUs,
om uzdamerns. Konuposanue, 60cnpoussedenue u uHoe UCHOIb3068aHUe KHUU
iy ee yacmu 6e3 co2nacus U30amens A6NAEMcs He3aKOHHbIM U 8ledent
V2ON06HYI0, AOMUHUCTPAMUBHYIO U 2DANCOAHCKYIO OMEEMCIMEEHHOCIb.

[ToanucaHo k ucnoJib3oBaHuio: 30.06.2022
O61beMm: 2,7 Mo.

®TI'BOY BO «YduMckuil rocyjlapCTBEHHbIN aBUALIMOHHbIN TEXHUYECKUN YHUBEPCUTET»
450008, Yda, ya1. K. Mapkca, 12.
Tes.: +7-908-35-05-007
e-mail: rik@ugatu.su

PREFACE

The textbook ‘Professional English for Software Developers’ is
intended as a manual for the students who have chosen software
engineering as the sphere of their specialization. They will be able to
acquire and master communication skills in English and use them
effectively in their professional field. Thus, the main objective of the
textbook is to develop learners’ ability to use the English language for a
variety of communicative purposes.

The manual also allows you to organize students’ independent work
to master the English language and form intercultural communication of
future specialists. From the very beginning of the unit the students are
given the opportunity to work independently with the topical vocabulary.

The book contains 12 units and texts for additional reading. These
texts can be recommended for testing and controlling text comprehension
and translation skills. Each unit contains a sufficient number of lexical
exercises, different tasks for discussions, suggested topics for writing
reports and making presentations. Lexical and grammar tasks ‘English for
Software Development’ have been developed according to modern
principles of learning and teaching foreign languages. Grammar Revision
tasks are presented in tables and a wide range of grammar tasks on
transformation, translation and sentence completion tasks by using
grammar patterns is also very useful for learning and using the English
language in practice.

We hope that these tasks can be a good way to let students and
Master students practice a wide variety of language skills. In turn teachers
may engage students in authentic language practice experiences,
supporting their learning strategies and critical thinking development.

In conclusion, we wish you success in your learning English for
professional purposes!

UNIT 1. Introduction to Software Engineering

Learning objectives
" to acquire basic knowledge about software engineering and its types
= to understand if all software requires software engineering

Key words and phrases. Give Russian equivalents and remember the
meanings of the key words and phrases used in the text

Concept; to be complicated; application; definition; tools; security
risks; vulnerability; operational software engineering; transitional
software engineering; recurrent; lifecycle; implementation;
maintenance; retirement; to be congruent; stand-alone applications;
interactive transaction-based applications; embedded control systems;
batch processing systems

Read the following text and do the exercises given after it

Software engineering is a concept in and of itself, but to better
understand it, you need to know what each part of the term means before
you can fully understand how they operate together. It can be difficult to
understand, even though it does seem straightforward. That 1s because the
pieces are more complicated than many believe - and working with
software engineering for an application is difficult and time-consuming.
Software engineering has two parts: software and engineering.

Software is a collection of codes, documents, and triggers that does a
specific job and fills a specific requirement.

Engineering is the development of products using best practices,
principles, and methods.

What is Software Engineering?

% It is a branch of engineering that deals with the development of
software products. It operates within a set of principles, best
practices, and methods that have been carefully honed throughout
the years, changing as software and technology change.

Software engineering leads to a product that is reliable, efficient, and
effective at what it does. While software engineering can lead to products

that do not do this, the product will almost always go back into the
production stage. So, what is the complete definition of software
engineering?

The IEEE fully defines software engineering as:
1. The application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software; that is, the
application of engineering to software.

What the software engineering meaning doesn’t explain is that everything
that has been software engineered needs to work on real machines in real
situations, not within.

Software engineering starts when there is a demand for a specific
result or output for a company, from an application. From somewhere on
the IT team, typically the CIO, there is a request put into the developer to
create some sort of software. The software development team breaks down
the project into the requirements and steps. Sometimes, this work will be
farmed out to independent contractors, vendors, and freelancers. When this
is the case, software engineering tools help to ensure that all of the work
done is congruent and follows best practices.

How do developers know what to put into their software? They break
it down into specific needs after conducting interviews, collecting
information, looking into the existing application portfolio, and talking to
IT leaders. Then, they will build a roadmap of how to build the software.
This is one of the most important parts because much of the “work™ is
completed during this stage - which also means that any problems
typically occur here as well.

The true starting point is when developers begin to write code for the
software. This is the longest part of the process in many cases as the code
needs to be congruent with current systems and the language used in them.
Unfortunately, these problems often aren’t noticed until much later on in
the project and then rework needs to be completed.

The code should be tested as it is written and once it has been
completed — at all parts of the life cycle. With software engineering tools,
you will be able to continuously test and monitor.

Software Engineering Basics
The true work of software engineering begins before the product has
even been designed — and the software engineering basics dictate that it
continues long after the “work” has been completed. It all begins with a

thorough and complete understanding of what your software needs to have
— this includes what the software needs to do, the system in which it needs
to operate, and all of the security that it entails. Security is one of the
software engineering basics because it is so essential to all aspects of
development. Without tools to help you better understand how your code
is being built and where any security problems may fall, your team can
easily become lost in the development stage.

Software engineering design basics require creating the instructions
for the computer and the systems. Much of this will take place at the
coding level by professionals who have comprehensive training. Still, it is
important to understanding that software engineering isn’t always a linear
process, which means that it requires thorough vetting once it has been
completed.

Not all software requires software engineering. Simplistic games or
programs that are used by consumers may not need engineering,
depending on the risks associated with them. Almost all companies do
require software engineering because of the high-risk information that they
store and security risks that they pose.

Software engineering helps to create customized, personalized
software that should look into vulnerabilities and risks before they even
emerge. Even when the software engineering principles of safety aren’t
required, it can also help to reduce costs and improve customer experience.

Types of Software Engineering

Software engineering studies the design, development, and
maintenance of software as an umbrella definition. Still, there are different
types of software engineering that a company or product may need.
Problems tend to emerge when software is low-quality or isn’t properly
vetted before deployment.

There has been a lot of demand for software engineers because of the
rate of change in user requirements, statutes, and the platforms we use.
Software engineering works on a few different levels:
Operational Software Engineering: Software engineering on the
operational level focuses on how the software interacts with the system,
whether or not it is on a budget, the usability, the functionality, the
dependability, and the security.

Transitional Software Engineering: This type focuses on how software
will react when it is changed from one environment to another. It typically

takes some scalability or flexibility in the development.
Software Engineering Maintenance: Recurrent software engineering
focuses on how the software functions within the existing system, as all
parts of it change.

Software engineering functions at all parts of the software
development lifecycle, including analysis, design, development, testing,
integration, implementation, maintenance, and even retirement.

It is important to understand that software engineering isn’t a new
practice, but it is constantly changing and can feel new on a regular basis.
Software is used in everything around us, so it is important to ensure that
all software is working properly. If it does not, it can result in loss of
money, loss of reputation, and even in some cases, loss of life.

[https://www.castsoftware.com/glossary/what-is-software-engineering-definition-
types-of-basics-introduction]

1. Text-based Assignments

1.1. Make nouns from the following verbs according to the model and
translate them
Verb+-tion (-ation)
Inform, create, connect, integrate, explore, prepare, destine, realize,
associate, implement, operate.

1.2. Give English equivalents of the following words and word
combinations:

Kazarbcst mpocThIM; KpPOMOTJIMBBIM, 3aHUMAIONIMA MHOTO BpPEMEHU;
KOHKPETHOE TpeOOBaHME; OTTAYMBATHCS HA MPOTSKEHWU MHOTUX JIET;
MIOJTHOE OTPEJICNICHHE; MPo0IeMbl 0€30MaCHOCTH; TIIATEIbHAS MPOBEPKa;
aCCOITMUPOBATBCA C YeM-JI.; COKpPaTUTh PACXOJbl; TOSIBISATHCS;
BCECOXBATHIBAIOIICE OIPEACIICHHE; MOTPEOHOCTh, B3aUMOJCHCTBOBATh C
cucrtemoii; omnepanuonHoe I10; mnepexonHass (nepexod ¢ 00HOU
naamgopmoel Ha opyeyro) pazpadoTka [10; TexHuueckoe 00CIyKUBaHUE;
KOJTUYCCTBCHHBIN ITOXO0/T; OTIPaBHAS TOYKA.

1.3. Match the following words with their definitions.

1. High a) the range of operations that can be run on a
technology computer or other electronic system

2. ngineering b) come into existence or greater prominence

3. functionality c) take or use another instead of

4. change d) instructions for a computer in some programming
language, often machine language

5. emerge ¢) advanced technological development, especially in
electronics

6. code f) a field of study or activity concerned with
modification or development in a particular area

7. application g) a position or stage on a scale of quantity, extent,

developer rank, or quality

8. level h) a person who writes computer programs to meet
specific requirements

1.4. Answer the following questions on the text

1) What does software engineering deal with?

2) What is the starting point for developers?

3) Does all software require software engineering?

4) How can you explain the importance of software engineering?

5) What are the types of software engineering?

6) Software engineering functions at all parts of the software
development, doesn’t it?

1.5. Read the text again and decide if the following statements are true
or false.

1) Software engineering 1is a branch of engineering that deals with the
development of software products and security problems are the most
important for developers.

2) Software engineering leads to a product that is reliable, efficient, and
effective at what it does.

3) All software requires software engineering.

4) Problems tend to emerge even if software is high-quality and is
properly vetted before deployment.

5) Software engineering functions at four parts of the software
development lifecycle, including analysis, design, development,
testing.

6) Software engineering isn’t a new practice, but it is constantly changing
and can feel new on a regular basis.

7) Software engineering isn’t always a linear process, which means that it
requires thorough vetting once it has been completed.

2. Focus on Grammar

2.1. Choose one of the verbs in brackets. Put them into the necessary
form to complete the following sentences

1) A lot of humans (be, have, do) dependent on technology today,
which will (be, have, do) bad to them.

2) I (be, have, do) had my 1Pad for years now and I (be, have, do) very
happy with it.

3) Because I (be, have, do) not have the chance to speak to my boss
yesterday I (be, have, do) to text her in Viber.

4) The 21st century (be, have, do) the age of cutting-edge technologies.

5) They (do, be, have) doing research work on the latest applications for
mobile devices.

6) All books can (be, do, have) read online.

7) We (be, have, do) not see any downsides in using personal computers
at all.

8) They (be, have, do) surfing the Internet all day yesterday.

9) Every day Linda (be, do, have) a lot of exercise to keep fit.

10) Safari browser online tutorial (be, do, have) provided the user with
help and support in using it.

2.2. Identify passive structures and translate the sentences
Bce Bpemena B cTpagaTelbHOM 3aJI0Te 00pa3yoTcs U3 BCIIOMOTaTEILHOTO
riiaroyia to be B COOTBETCTBYIOIIEM JIUIIE YMCIIE U BPEMEHU M CMBICTIOBOTO

riarosa B oopme mpudacTus mpoiesaiero Bpemenu /Participle 11/.

1) This method has been referred to in an earlier paper.
2) I do not think this instrument can be relied upon.

3) In operational categories, the factors that decide the software
performance in operations. It can be measured on: budget, usability,
efficiency and correctness.

4) If the job is entered without errors it will be chosen for execution.

5) This electronic equipment has been designed for speeding up
production.

6) Business variables have been and are being expressed as
mathematical functions and are being statistically analyzed.

7) Even when the software engineering principles of safety aren’t
required, it can also help to reduce costs and improve customer
experience.

8) This interview was also recorded as a video podcast. Check out the
video on the Software Daily YouTube channel.

9) The code should be tested as it is written and once it has been

completed — at all parts of the life cycle.

3. Discussion
3.1. Possible topics for discussion

1) What are the attributes of good software? What is your idea of it?

2) What 1s the difference between software engineering and computer
science?

3) Do you agree? Why/why not?

4) What is interesting for you in this branch of engineering?

3.2. Write a short summary of the text about software engineering

3.3. Make up and dramatize a dialogue using the top interview questions
for software engineers

Hiring a software engineer is a process that should be approached
carefully and with deliberation. A good software engineer will help your
company grow, but one that does not have the right skills or a good work
ethic can slow down and hinder your growth.

Therefore, you should know the best questions to ask during the
hiring process to successfully recruit software engineers.

1) Why did you decide to become a software engineer?
2) What programming languages do you prefer?

3) What’s important when checking a team member’s code?
4) What project management tools have you used?

5) Talk about a project you completed successfully.

6) What are you looking for in this job?

7) Why should we hire you?

8) How did you solve a problem you faced?

9) What are you working on right now?

10) How do you assure software quality?

11) Do you enjoy working with a team or alone?

12) What are your career goals?

13) How do you keep your skills sharp and up to date?
14) What questions do you have for us?

3.4. Write your comments on the following topic How to Become an
Expert Software Engineer (and Get Any Job You Want)

Future Selection Ideas > How to Become an Expert Software Engineer
(and Get Any Job You Want)

gHi all! A few years ago, working for Canonical Ltd. on the world’s
most popular Linux distribution: Ubuntu, seemed like just a dream to
me... For over 2 years now, I’ve been living that dream!

Achieving my dream job inspired me to write a book to help others make
their dreams a reality too. The book is called: “How to Become an Expert
Software Engineer (and Get Any Job You Want)”. It helps readers build
impressive résumés by introducing them to the world of free and open
source software development as a means of acquiring new skills and
gaining focused, real world work experience.

I’d really love to hear what you guys thought of it! [11].

4. Additional reading
4.1. Read and translate the following text and suggest the title

Software engineering is a systematic approach to the production of
software that takes into account practical cost, schedule, and dependability
issues, as well as the needs of software customers and producers. How this
systematic approach 1is actually implemented varies dramatically
depending on the organization developing the software, the type of
software, and the people involved in the development process. There are
no universal software engineering methods and techniques that are suitable
for all systems and all companies. Rather, a diverse set of software
engineering methods and tools has evolved over the past 50 years. Perhaps
the most significant factor in determining which software engineering
methods and techniques are most important i1s the type of application that
is being developed.

There are many different types of application including:

1. Stand-alone applications are application systems that run on a
local computer, such as a PC. They include all necessary functionality and
do not need to be connected to a network. Examples of such applications
are office applications on a PC, CAD programs, photo manipulation
software, etc.

2. Interactive tramsaction-based applications are applications that
execute on a remote computer and that are accessed by users from their
own PCs or terminals. Obviously, these include web applications such as
e-commerce applications where you can interact with a remote system to
buy goods and services. This class of application also includes business
systems, where a business provides access to its systems through a web
browser or special-purpose client program and cloud-based services, such
as mail and photo sharing. Interactive applications often incorporate a
large data store that is accessed and updated in each transaction.

3. Embedded control systems are software control systems that
control and manage hardware devices. Numerically, there are probably
more embedded systems than any other type of system. Examples of
embedded systems include the software in a mobile (cell) phone, software
that controls anti-lock braking in a car, and software in a microwave oven
to control the cooking process.

4. Batch processing systems are business systems that are designed to
process data in large batches. They process large numbers of individual
inputs to create corresponding outputs. Examples of batch systems include
periodic billing systems, such as phone billing systems, and salary
payment systems.

5. Entertainment systems are systems that are primarily for
personal use and which are intended to entertain the user. Most of these
systems are games of one kind or another. The quality of the user
interaction offered is the most important distinguishing characteristic of
entertainment systems.

6. Systems for modeling and simulation are systems that are
developed by scientists and engineers to model physical processes or
situations, which include many, separate, interacting objects. These are
often computationally intensive and require high-performance parallel
systems for execution.

7. Data collection systems are systems that collect data from their
environment using a set of sensors and send that data to other
systems for processing. The software has to interact with sensors and often
is installed in a hostile environment such as inside an engine or in
a remote location. 8. Systems of systems are systems that are composed of
a number of other software systems. Some of these may
be generic software products, such as a spreadsheet program.
Other systems in the assembly may be specially written for that
environment.

Of course, the boundaries between these system types are blurred. If
you develop a game for a mobile (cell) phone, you have to take into
account the same constraints (power, hardware interaction) as the
developers of the phone software. Batch processing systems are often used
in conjunction with web-based systems. For example, in a company,
travel expense claims may be submitted through a web application but
processed in a batch application for monthly payment. You use different
software engineering techniques for each type of system because
the software has quite different characteristics. For example,
an embedded control system in an automobile is safety-critical and is
burned into ROM when installed in the wvehicle. It s
therefore very expensive to change. Such a system needs very extensive
verification and validation so that the chances of having to recall
cars after sale to fix software problems are minimized.

User interaction is minimal (or perhaps nonexistent) so there
1s no need to use a development process that relies on user interface
prototyping .[10]

4.2. Explain each type of applications in your own words

UNIT 2. What is Software? Types of Software
Learning objectives
= to understand what software is and how it works
= to acquire basic knowledge about different types of software
= to understand the difference between system software and
application software

Key words and phrases. Give Russian equivalents and remember the
meanings of the key words and phrases.

Application software; system software; to execute; scripts; language
processor; middleware; assemblers; compilers; debuggers;
interpreters; source code; computer's hard drive; high-level
application software; to boot up; to run on a device; image editors;
object code; to launch

Before reading the text B watch the video from https://www.
https://searchapparchitecture.techtarget.com/definition/software ~ to get
some information on the topic

Read the following text and do the exercises given after it

Software 1s a set of instructions, data or programs used to operate
computers and execute specific tasks. It is the opposite of hardware, which
describes the physical aspects of a computer. Software is a generic term
used to refer to applications, scripts and programs that run on a device. It
can be thought of as the variable part of a computer, while hardware is the
invariable part.

The two main categories of software are application software and
system software. Application software is a computer software package
that performs a specific function for a user, or in some cases, for another
application. An application can be self-contained, or it can be a group of
programs that run the application for the user. Examples of modern
applications include office suites, graphics software, databases and
database management programs, web browsers, word processors, software
development tools, image editors and communication platforms.

System software is designed to run a computer's hardware and
provides a platform for applications to run on top of. System software
coordinates the activities and functions of the hardware and software. In
addition, it controls the operations of the computer hardware and provides
an environment or platform for all the other types of software to work in.
The OS is the best example of system software; it manages all the other
computer programs. Other examples of system software include the
firmware, computer language translators and system utilities.

Other types of software include programming software, which
provides the programming tools software developers need; middleware,
which sits between system software and applications; and driver software,
which operates computer devices and peripherals.

Language Processor: As we know that system software converts the
human-readable language into a machine language and vice versa. So, the
conversion is done by the language processor. It converts programs written
in high-level programming languages like Java, C, C++, Python,
etc.(known as source code), into sets of instructions that are easily
readable by machines (known as object code or machine code).

Driver software. Also known as device drivers, this software is
often considered a type of system software. Device drivers control the
devices and peripherals connected to a computer, enabling them to
perform their specific tasks. Every device that is connected to a computer
needs at least one device driver to function. Examples include software
that comes with any nonstandard hardware, including special game
controllers, as well as the software that enables standard hardware, such as
USB storage devices, keyboards, headphones and printers.

Middleware. The term middleware describes software that mediates
between application and system software or between two different kinds of
application software. For example, middleware enables Microsoft
Windows to talk to Excel and Word. It is also used to send a remote work
request from an application in a computer that has one kind of OS, to an
application in a computer with a different OS. It also enables newer
applications to work with legacy ones.

Programming software. Computer programmers use programming
software to write code. Programming software and programming tools
enable developers to develop, write, test and debug other software
programs. Examples of programming software include assemblers,
compilers, debuggers and interpreters.

Software stack

Application
(such as a CRM or ERP tool)
Middleware
(applications such as a database)
OS UI
OS services
OS drivers and runtimes
Hypervisor (optional)
Firmware (BIOS)
Hardware

Fig.1. Here is a complete picture of the full software stack

How does software work?

Application software consists of many programs that perform
specific functions for end users, such as writing reports and navigating
websites. Applications can also perform tasks for other applications.
Applications on a computer cannot run on their own; they require a
computer's OS, along with other supporting system software programs, to
work.

These desktop applications are installed on a user's computer and use
the computer memory to carry out tasks. They take up space on the
computer's hard drive and do not need an internet connection to work.
However, desktop applications must adhere to the requirements of the
hardware devices they run on.

Web applications, on the other hand, only require internet access to
work; they do not rely on the hardware and system software to run.
Consequently, users can launch web applications from devices that have a
web browser. Since the components responsible for the application
functionality are on the server, users can launch the app from Windows,
Mac, Linux or any other OS.

System software sits between the computer hardware and the
application software. Users do not interact directly with system software as
it runs in the background, handling the basic functions of the computer.
This software coordinates a system's hardware and software so users can
run high-level application software to perform specific actions. System
software executes when a computer system boots up and continues running
as long as the system is on.

System software vs. application software

System software Application software
General-purpose software that System software that performs
manages basic system resources and specific tasks to meet user needs
processes
Written in low-level assembly Written in high-level languages, such
language or machine code as Python or JavaScript
Must meet specific hardware needs; | Does not take hardware into account
interacts closely with hardware and doesn’t interact directly with
hardware
Installed at the same time as the OS, | User or admin installs software when
usually by the manufacturer needed
Runs any time the computer is on User triggers and stops the program
Works in the background and users do Runs in the foreground and users
not usually access it work directly with the software to
perform specific tasks
Runs independently Needs system software to run
Is necessary for the system to function Isn’t needed for the system to
function

Fig. 2. The key differences between system and application software

Early software was written for specific computers and sold with the
hardware it ran on. In the 1980s, software began to be sold on floppy
disks, and later on CDs and DVDs. Today, most software is purchased and
directly downloaded over the internet. Software can be found on vendor

websites or application service provider websites.
[https://searchapparchitecture.techtarget.com/definition/software]

1. Text-based Assignments

1.1. Give English equivalents of the following words and word
combinations:

VYrnpaBnenue 0a3zaMu JaHHBIX; HEHU3MEHAEMash 4YacTh; CAMOCTOATEIbHBIN
(aBTOHOMHBI); TEKCTOBBIN PEAAKTOP C PACIIUPEHHBIMH BO3MOXKHOCTSIMHU
dbopmaTupoBaHus; TPEAOCTABIATh IUIATHOPMY; MHKPOMIPOIIECCOPHOE
nporpaMMHOe obecrniedeHue; nepudepuitHpie yCTporcTBa; HAOOP KOMaH/I;
mexiatgopmuoe [1O, oOecneunBaroiiee Mpo3padyHyrd padoTty

MPUWIOKEHUN B HEOJHOPOJHOW CETEBOM CpEle; HAYyUIHUKHU; ITOCHhUIATH
3alpocC; BBINOJHAThH 3a/Ja4d; padoTaTh HEMOCPEACTBEHHO C CHUCTEMHBIM
[1O

1.2. Write a sentence with each word to illustrate its meaning

a) to provide — provider

b) to vary — invariable — variation

c) specific — specification — to specify
d) to require — requirement

¢) to execute — execution — executable

1.3. Match the following words from the text with their meanings

Self-contained, vendor, machine Ilanguage, functionality,
application, platform, to perform

a) the range of operations that can be run on a computer or other
electronic system;

b) not depending on or influenced by others;

c) to work, to function, or do something to a specified standard;

d) machine code;

e) a standard for the hardware of a computer system, which determines
the kinds of software it can run;

f) a seller, particularly of real property;

g) a program or piece of software designed to fulfill a particular

purpose.

1.4. Answer the following questions on the text

1) What is system software designed for?

2) What types or categories does software include?

3) What is the other name of driver software?

4) Are assemblers and compilers the examples of programming
software or middleware?

5) What can you say about desktop applications?

6) What more would you like your software to do?

1.5. Read the text again and decide if the following statements are true or

false.

1) Software is the opposite of hardware, which describes the physical
aspects of a computer and it can be thought of as the variable part of
a computer, while hardware is the invariable part.

2) An application can never be a group of programs that run the
application for the user.

3) Communication platform is one of the examples of modern
applications.

4) System software coordinates the activities and functions of software.

5) C++ is one of the low level programming languages.

6) Every device that is connected to a computer doesn’t need any device
driver to function.

7) Since the components responsible for the application functionality
are on the server, users can launch the app from Windows, Mac,
Linux or any other OS.

8) In the 1990s, software began to be sold on floppy disks, and later on
CDs and DVDs.

2. Focus on Grammar

2.1. Complete the following sentences and translate them (mind the modal
verb)

1) Our manager solve many complicated practical problems
last month (had to, is to, can, must).

2) Now he study this phenomenon (may, is to, could).

3) He a jet engine in action many years ago (can’t see,
couldn’t have seen, might have seen).

4) Users launch the app from Windows, Mac, Linux or any other
OS (must have, can, couldn’t).

5) Desktop applications adhere to the requirements of the
hardware devices they run on (are allowed to, must, mustn’t).

6) Software be found on vendor websites or application service

provider websites (can’t, have to, can, must).

7) For example,

without your Internet browser software,

you

surf the Internet and read this article (mustn’t, could not, may

not).

8) The business growth comes together with a rise in the amount of data

that

administered, which results in the need to manage all that

information that is continuously growing successfully (can, can’t be,

should be).

2.2. Study the table and make up your own sentences to demonstrate the
following modal meanings

a) must, may u might +
Perfect Infinitive

Bripaxxaror BO3MOXKHOCTH
WM BEPOSITHOCTD ICHCTBUS,
OTHOCSIIETOCA K IIPOLIIOMY
U OOBIYHO IEpEeBOAATCA

He must have lost his
book somewhere. Om,
JOJDKHO ~ OBITh, TOTEPSII
CBOIO KHHTY TJIe-TO.

Perfect Infinitive

BO3MOYKHOCTH COBEPILECHHUS
JNEUCTBHAS B IPOLUIOM U
OOBIYHO TEpPEeBOJATCA MPH
MOMOILM CJIOB «HE MOXKET
OBITHY.

CJIOBAMH «JOJDKHO OBITb,
BO3MOYKHO.
b) can / could +not + | Beipaxator comaeane B |He cannot have made

such a serious mistake. He
MOJKET OBITh, YTOOBI OH
JOITYCTHII TaKyIo
CEPBhE3HYIO OIIHNOKY.

c) ought (to), should,
could, might + Perfect
Infinitive

VYka3bIBaroT
JICUCTBHE,
WIA JIOJDKHO
COBEPILIUTHCA,
COBEPIINIOCH.

Ha TO, YTO
KOTOPOE€ MOTJIO
ObL1I0 OBl

HE

You should have changed
the current strength at all
points of the circuit. Bam
cienoBajgo Obl M3MEHUTH
CIJIy TOKa BO BCEX TOYKaX
TN,

2.3. Translate the following sentences with modal verbs in combination

with Perfect Infinitives

1) They must have lost their way, as they appeared in the village only at

night.

2) He cannot have entrusted this scientific work to a man he has known
for such a short period of time.
3) She rested her eyes on him thinking of all things he must have done
since she saw him last.

4) You could not have seen him there because he left the place two
months ago.

5) There are so many mistakes in your exercises. You should have been
more attentive.

6) In the morning I did not find him in his room, he must have gone
leaving no note for us.

7) She might have overlooked something that may turn out to be
important in proving his innocence.

8) In the fewest words he told them that a fatal accident must have
happened to her.

3. Discussion

3.1. Answer the questions concerning software development

1) How much do you know about computer software?

2) What is your favorite piece of software?

3) Do you ever have software problems?

4) Do you keep up to date with the latest software?

5) Are you surprised that a lot of software is free?

6) Have you ever bought pirated software? Would you?

7) What do you think of speech recognition software?

8) What more would you like your software to do?

9) What questions would you like to ask Bill Gates or Steve Jobs about
software?

3.2. Possible topics for discussion

1) Bill Gates said: "A solid working knowledge of productivity
software and other IT tools has become a basic foundation for
success in virtually any career." Do you agree with him?

2) What is the greatest piece of software ever created?

3) Why do you think Microsoft has stuck to software and never went
into producing computers, like Apple?

4) Do you think software is good value for money?

5) What do you think of people who design software?

4. Additional reading
4.1. Read and translate the following text
Design and implementation

The software development lifecycleis a framework that project
managers use to describe the stages and tasks associated with designing
software. The first steps in the design lifecycle are planning the effort and
then analyzing the needs of the individuals who will use the software and
creating detailed requirements. After the initial requirements analysis, the
design phase aims to specify how to fulfill those user requirements.

The next is step is implementation, where development work is
completed, and then software testing happens. The maintenance phase
involves any tasks required to keep the system running.

The software design includes a description of the structure of the
software that will be implemented, data models, interfaces between system
components and potentially the algorithms the software engineer will use.

The software design process transforms user requirements into a
form that computer programmers can use to do the software coding and
implementation. The software engineers develop the software design
iteratively, adding detail and correcting the design as they develop it.

The different types of software design include the following:

Architectural design. This 1is the foundational design, which
identifies the overall structure of the system, its main components and their
relationships with one another using architectural design tools.

High-level design. This is the second layer of design that focuses on
how the system, along with all its components, can be implemented in
forms of modules supported by a software stack. A high-level design
describes the relationships between data flow and the various modules and
functions of the system.

Detailed design. This third layer of design focuses on all the
implementation details necessary for the specified architecture.

Planning

Maintenence Analysis

How the
software
development
lifecycle
works

Testing and Design
integration

Implementation

Fig. 3. The main steps involved in developing software
How to maintain software quality

Software quality measures if the software meets both its functional
and nonfunctional requirements.

Functional requirements identify what the software should do. They
include technical details, data manipulation and processing, calculations or
any other specific function that specifies what an application aims to
accomplish.

Nonfunctional requirements -- also known as quality attributes --
determine how the system should work. Nonfunctional requirements
include portability, disaster recovery, security, privacy and usability.

Software testing detects and solves technical issues in the
software source code and assesses the overall usability, performance,
security and compatibility of the product to ensure it meets its
requirements.

The dimensions of software quality include the following
characteristics:

Accessibility. The degree to which a diverse group of people,

including individuals who require adaptive technologies such as voice
recognition and screen magnifiers, can comfortably use the software.

Compatibility. The suitability of the software for use in a variety of
environments, such as with different OSes, devices and browsers.

Efficiency. The ability of the software to perform well without
wasting energy, resources, effort, time or money.

Functionality. Software's ability to carry out its specified functions.

Installability. The ability of the software to be installed in a specified
environment.

Localization. The various languages, time zones and other such
features a software can function in.

Maintainability. How easily the software can be modified to add and
improve features, fix bugs, etc.

Performance. How fast the software performs under a specific load.

Portability. The ability of the software to be easily transferred from
one location to another.

Reliability. The software's ability to perform a required function
under specific conditions for a defined period of time without any errors.

Scalability. The measure of the software's ability to increase or
decrease performance in response to changes in its processing demands.

Security. The software's ability to protect against unauthorized
access, invasion of privacy, theft, data loss, malicious software, etc.

To maintain software quality once it is deployed, developers must
constantly adapt it to meet new customer requirements and handle
problems customers identify. This includes improving functionality, fixing
bugs and adjusting software code to prevent issues. How long a product
lasts on the market depends on developers' ability to keep up with these
maintenance requirements.

When it comes to performing maintenance, there are four types of
changes developers can make, including:

Corrective. Users often identify and report bugs that developers must
fix, including coding errors and other problems that keep the software
from meeting its requirements.

Adaptive. Developers must regularly make changes to their software
to ensure it is compatible with changing hardware and software
environments, such as when a new version of the OS comes out.

Perfective. These are changes that improve system functionality,
such as improving the user interface or adjusting software code to enhance
performance.

Preventive. These changes are done to keep software from failing
and include tasks such as restructuring and optimizing code.

Software licensing and patents

A software license is a legally binding document that restricts the use
and distribution of software.

Typically, software licenses provide users with the right to one or
more copies of the software without violating copyright. The license
outlines the responsibilities of the parties that enter into the agreement and
may place restrictions on how the software can be used.

Software licensing terms and conditions generally include fair use of
the software, the limitations of liability, warranties, disclaimers and
protections if the software or its use infringes on the intellectual property
rights of others.

Licenses typically are for proprietary software, which remains the
property of the organization, group or individual that created it; or for free
software, where users can run, study, change and distribute the software.
Open source is a type of software where the software is developed
collaboratively, and the source code is freely available. With open source
software licenses, users can run, copy, share and change the software
similar to free software.

Over the last two decades, software vendors have moved away from
selling software licenses on a one-time basis to a software-as-a-
service subscription model. Software vendors host the software in the
cloud and make it available to customers, who pay a subscription fee and
access the software over the internet.

Although copyright can prevent others from copying a developer's
code, a copyright cannot stop them from developing the same software
independently without copying. A patent, on the other hand, enables a
developer to prevent another person from using the functional aspects of
the software a developer claims in a patent, even if that other person
developed the software independently.

In general, the more technical software is, the more likely it can be
patented. For example, a software product could be granted a patent if it

creates a new kind of database structure or enhances the overall

performance and function of a computer.
[https://searchapparchitecture.techtarget.com/definition/software]

4.2. Make a report on history of software. This brief timeline of the history
of software will help you to prepare for your report

The term software was not used until the late 1950s. During this
time, although different types of programming software were being
created, they were typically not commercially available. Consequently,
users -- mostly scientists and large enterprises -- often had to write their
own software.

June 21, 1948. Tom Kilburn, a computer scientist, writes the world's first
piece of software for the Manchester Baby computer at the University of
Manchester in England.

Early 1950s. General Motors creates the first OS, for the IBM 701
Electronic Data Processing Machine. It is called General Motors Operating
System, or GM OS.

1958. Statistician John Tukey coins the word software in an article about
computer programming.

Late 1960s. Floppy disks are introduced and are used in the 1980s and
1990s to distribute software.

Nov. 3, 1971. AT&T releases the first edition of the Unix OS.

1977. Apple releases the Apple II and consumer software takes off.

1979. VisiCorp releases VisiCalc for the Apple 11, the first spreadsheet
software for personal computers.

1981. Microsoft releases MS-DOS, the OS on which many of the early
IBM computers ran. IBM begins selling software, and commercial
software becomes available to the average consumer.

1980s. Hard drives become standard on PCs, and manufacturers start
bundling software in computers.

1983. The free software movement is launched with Richard Stallman's
GNU (GNU is not Unix) Linux project to create a Unix-like OS with
source code that can be freely copied, modified and distributed.

1984. Mac OS is released to run Apple's Macintosh line.

Mid-1980s. Key software applications, including AutoDesk AutoCAD,
Microsoft Word and Microsoft Excel, are released.

1985. Microsoft Windows 1.0 is released.

1989. CD-ROMs become standard and hold much more data than floppy

disks. Large software programs can be distributed quickly, easily and
relatively inexpensively.

1991. The Linux kernel, the basis for the open source Linux OS, is
released.

1997. DVDs are introduced and able to hold more data than CDs, making
it possible to put bundles of programs, such as the Microsoft Office Suite,
onto one disk.

1999. Salesforce.com uses cloud computing to pioneer software delivery
over the internet.

2000. The term software as a service (SaaS) comes into vogue.

2007. IPhone is launched and mobile applications begin to take hold.

2010 to the present. DVDs are becoming obsolete as users buy and
download software from the internet and the cloud. Vendors move to
subscription-based models and SaaS has become common.

UNIT 3. Operating System

Learning objectives
= to understand what operating system is and how it works
" to acquire basic knowledge about different functions and
characteristics of OS and to use a chart to organize the information
= to understand the role of OS

Key words and phrases. Give Russian equivalents and remember the
meanings of the key words and phrases.

Core software program; to run; a consistent environment; to interact;
command-line interface; graphical user interface; to utilize; to
coordinate; device drivers; files and folders; to rename; to monitor
system health; to retrieve data; software compatibility; open source;
to be owned by smb.; to charge money; incompatible; edition;
random access memory.

Before reading the text B watch the video from
https://edu.gcfglobal.org/en/computerbasics/understanding-operating-
systems/1/ to get some information on the operating systems. Render it into
Russian

Read the following text and do the exercises given after it

Operating System (OS) is one of the core software programs that
runs on the hardware and makes it usable for the user to interact with the
hardware so that they can send commands (input) and receive results
(output). It provides a consistent environment for other software to execute
commands. So we can say that the OS acts at the center through which the
system hardware, other software, and the user communicate. The
following figure shows the basic working of the operating system and how
it utilizes different hardware or resources.

Maonitor

Applications

5
‘ .

Hard Drive

Kfybua rd
S

Fig. 4. Operating system working as a core part

Basic Functions of the Operating system
The key five basic functions of any operating system are as following:

1. Interface between the user and the hardware: An OS provides an
interface between user and machine. This interface can be a graphical
user interface (GUI) in which users click onscreen elements to
interact with the OS or a command-line interface (CLI) in which
users type commands at the command-line interface (CLI) to tell the
OS to do things.

RIS UL U - Il

Fig. 5. GUI vs CLI

2. Coordinate hardware components: An OS enables coordination of
hardware components. Each hardware device speaks a different
language, but the operating system can talk to them through the
specific translational software called device drivers. Every hardware
component has different drivers for Operating systems. These drivers
make the communication successful between the other software and
the hardware.

Operating System

L]
LR

/L“’_*

Fig. 6. Device Drivers in between OS and Hardware devices

3. Provide environment for software to function: An OS provides an
environment for software applications to function. An application
software is a specific software which is used to perform specific task.
In GUI operating systems such as Windows and macOS, applications
run within a consistent, graphical desktop environment.

4. Provide structure for data management: An OS displays
structure/directories for data management. We can view file and
folder listings and manipulate on those files and folders like (move,
copy, rename, delete, and many others).

5. Monitor system health and functionality: OS monitors the health
of our system’s hardware, giving us an idea of how well (or not) it’s
performing. We can see how busy our CPU is, or how quickly our
hard drives retrieve data, or how much data our network card is
sending etc. and it also monitors system activity for malware.

) Performance Monitor - olEN

(%) File Action View Window Help - =

e 20 =0
® Performance Eesa-¢xXs/coEauv @
4 g Monitonng Tools [
B8 Performance Monitor
4 | n Data Collector Sets o
&, User Defined
B0
& System
2, Event Trace Sessions o
. Startup Event Trace Ee;!
Reports
i eRe 40
20- & , | f i
| Aa [} | II
; |3 A) |I W .nl 1 I'-._,., / I-_,___ jl i, --_'1'_'\|--\.."' i =iy '--—.__/Illll.-'\-__. e |
1:42:28 AM 1:41:20 AM 1:41:50 AM 1:42:77 AM
Last 3994 Average 6.250 Minimum 0.000
Maximum 33887 Duration 1:40
' Show Color Scale Counter Instance Parent
(cd 10 X PSR TE Total =5
| € »
< *» |l

Fig. 7. Performance Monitor in windows

Operating System Characteristics

The Operating systems are different according to the three primary
characteristics which are licensing, software compatibility, and complexity.

Licensing

There are basically three kinds of Operating systems. One is Open
Source OS, another 1s Free OS and the third is Commercial OS.

Linux is an open source operating system which means that anyone
can download and modify it for example Ubuntu etc.

A free OS doesn’t have to be open source. They are free to download
and use but cannot modify them. For example, Google owns Chrome OS
and makes it free to use.

Commercial operating systems are privately owned by companies
that charge money for them. Examples include Microsoft Windows and
Apple macOS. These require to pay for the right (or license) to use their
Operating systemes.

Software Compatibility
The developers make the software which may be compatible or
incompatible in different versions within the same operating system’s type

but they can’t be compatible with the other OS types. Every OS type has
its own software compatibility.

Complexity

Operating systems come in basically two editions one is 32-bit and other is
64-bit editions. The 64-bit edition of an operating system best utilizes
random access memory (RAM). A computer with a 64-bit CPU can run
either a 32-bit or a 64-bit OS, but a computer with a 32-bit CPU can run
only a 32-bit OS.

32-Bit
Vs

64-Bit
Windows OS

Fig. 8. 32-bit vs 64-bit Windows OS

[https://medium.com/computing-technology-with-it-fundamentals/operating-system-
its-functions-and-characteristics-c0946e¢4215¢6]

1. Text-based Assignments

1.1. Give English equivalents of the following words and word
combinations:

OTnpaBisaTh HHCTPYKIIMK; 00€CTIeUnBaTh Cpey; KIMKATh HA 3JIEMEHTHI Ha
DKpaHe, TMporpaMMHOe oOecrledyeHue Il IEepPeBOjJia; BBITIOIHITH
OTpENEICHHYI0 3ajady; YIpaBJICHUE JaHHBIMH, YyAAlATh (ailibl;
nepeMeniaTh; XeCTKUH JHCK; IedaTaTb KoMmaHibl, BpemoHocHoe [10;
[JIABHBIE XapaKTEPUCTUKU, CIIOKHOCTh; O€CIilaTHAs oOmepalMoHHas
CHUCTEMa; IMpaBO TOJIb30BaHMUS; COBMECTUMOCTh;, HCIIOJIBH30BATh
HAWJTY4IIUM 00pa3oM.

1.2. Match the following words from the text with their meanings

1. Device driver

a) the smallest piece of information used by a
computer.

2. Bit

b) system software that manages hardware, software,
and resources, and provides services for other
software. It will also usually provide an interface for
the end user.

3. Command
line interface

c) any software designed to do something that the user
would not wish 1itto do, hasn't asked it to
do, and often has no knowledge of until it's too late.

4. GUI

d) the level in difficulty in solving mathematically
posed problems as measured by the time, number of
steps or arithmetic ~ operations, or memory
space required.

5. Malware

e) a type of interface that allows the user to interact
with a computer system. It usually involves clicking
on icons or selecting options from a menu.

6. Complexity

f) a means of communication between
a program and its user, based solely on
textual input and output. Commands are input with
the help of a keyboard or similar device and are
interpreted and executed by the program. Results are
output as text or graphics to the terminal.

7. Operating
system

g) smth. that often forms part of the lowest level of
the operating system kernel, with which they are
linked when the kernel 1s built. Some more recent
systems have loadable device drivers
which can be installed from files.

1.3. Answer the following questions on the text

1) What is the relationship between operating systems and computer

hardware?

2) What is the main purpose of an operating system?

3) How many basic functions does an operating system have?

4) What devices make the communication successful between the other
software and the hardware?

5) What does an OS display?
6) Is there any difference between Open Source OS and Free OS?
7) What does device driver software do?

1.4. Read the text again and decide if the following statements are true or
false.

1) An OS provides a consistent environment for other software to
execute commands.

2) There are basically three kinds of Operating systems. One is Open
Source OS, another is Free OS and the third is Network Operating
System.

3) The 64-bit edition of an operating system best utilizes read only
memory (ROM).

4) Every OS type has its own software compatibility.

5) In GUI operating systems such as Windows and macOS, applications
cannot run within a graphical desktop environment.

6) Every hardware component has different drivers for Operating
systems.

7) Linux is one of the examples of commercial operating systems.

8) OS monitors the health of our system’s hardware.

2. Focus on Grammar

2.1. Define tense and voice of the predicates in the following sentences
and translate them into Russian

1) Actually, the term "computer" is fast being replaced by the more
appropriate term "electronic data processing machine".

2) Recently certain binary machines have been announced which will
be capable of utilizing magnetic disc file memories.

3) This kind of computers will be equipped with a disc file of extremely
high capacity and access speed.

4) In the past few years several designs have been advanced and some
have actually been built.

5) Business variables have been and are being expressed as
mathematical functions and are being statistically analyzed.

6) Eight distinguished speakers have been asked to consider the

potentialities and limitations of the computer in activities related to
management.

7) The problem of designing a non-mechanical printer has already been
studied in the central research laboratory.

8) The computer is given position, data and velocity vectors of the
satellite for a given time.

2.2. Insert either, neither or both. Translate the sentences into Russian

BOTH - EITHER - NEITHER

BOTH . | EITHER . .- NEITHER
= the two alternatives = one of the two alternatives = none of the two alternatives
= Both(AA AND(B) = Either(A/ ORB) = Neither /A NOR®B)

X sorr JEmEl ano JEXT RN eirHer JEEERN OR) B NeimHER IR NoR JEDNT)

> I can speak BOTH { | > I can study EITHER | &> 1can speak NEITHER
ENGLISH AND SPANISH, | | ENGLISH OR SPANISH. FRENCH NOR ARABIC.

1) ...operating systems (Linux and UBUNTU) are very good.

2) I don’t want to install ... Windows nor macOS.

3) They ... laughed and one of the programmers looked down at his
desk.

4) We were ... in the office, but ... of us spoke for some time.

5) ...you apologize, or I’ll never speak to you again.

6) Can ... of you prepare a presentation?

7) ... students passed the test.

8) Whatever ... of you is thinking, you’re wrong.

9) ...he ... I went to speak to the manager of our project.

10) Ienjoy ... the report and the presentation.

3. Discussion
3.1. Discuss the following questions with your groupmates

1) How would using a computer be different if it had no operating
system? How would programming be different?

2) How would using a computer be different if it had no operating
system? How would programming be different?

3) List several mental tasks that people do better than computers. List
several mental tasks that computers do better than people. Can you
find any general characteristics that distinguish the items on the two
lists?

4) Some popular Operating Systems include Linux Operating System,
Windows Operating System, VMS, 0S/400, AIX, z/OS, etc. What
OS does your home computer have? Are you satisfied with it? Have
you had any troubles?

3.2. According to the information in the text complete the graph and speak
about functions and characteristics of OSs

Operating System

Functions Characteristics

A I

J0000

4. Additional reading

4.1. Read and translate the following text about some types of Operating
Systems

Batch operating system

The users of a batch operating system do not interact with the
computer directly. Each user prepares his job on an off-line device like
punch cards and submits it to the computer operator. To speed up
processing, jobs with similar needs are batched together and run as a
group. The programmers leave their programs with the operator and the
operator then sorts the programs with similar requirements into batches.

Time-sharing operating systems

Time-sharing is a technique which enables many people, located at
various terminals, to use a particular computer system at the same time.
Time-sharing or multitasking is a logical extension of multiprogramming.
Processor's time which is shared among multiple users simultaneously is
termed as time-sharing.

The main difference between Multiprogrammed Batch Systems and
Time-Sharing Systems is that in case of Multiprogrammed batch systems,
the objective is to maximize processor use, whereas in Time-Sharing
Systems, the objective is to minimize response time.

Multiple jobs are executed by the CPU by switching between them,
but the switches occur so frequently. Thus, the user can receive an
immediate response. For example, in a transaction processing, the
processor executes each user program in a short burst or quantum of
computation. That is, if n users are present, then each user can get a time
quantum. When the user submits the command, the response time is in few
seconds at most.

The operating system uses CPU scheduling and multiprogramming to
provide each user with a small portion of a time. Computer systems that
were designed primarily as batch systems have been modified to time-
sharing systems.

Distributed operating System

Distributed systems use multiple central processors to serve multiple
real-time applications and multiple users. Data processing jobs are
distributed among the processors accordingly.

The processors communicate with one another through various
communication lines (such as high-speed buses or telephone lines). These
are referred as loosely coupled systems or distributed systems. Processors
in a distributed system may vary in size and function. These processors are
referred as sites, nodes, computers, and so on.

Network operating System

A Network Operating System runs on a server and provides the
server the capability to manage data, users, groups, security, applications,
and other networking functions. The primary purpose of the network
operating system is to allow shared file and printer access among multiple
computers in a network, typically a local area network (LAN), a private
network or to other networks.

Examples of network operating systems include Microsoft Windows
Server 2003, Microsoft Windows Server 2008, UNIX, Linux, Mac OS X,
Novell NetWare, and BSD.

Real Time operating System

A real-time system is defined as a data processing system in which
the time interval required to process and respond to inputs is so small that
it controls the environment. The time taken by the system to respond to an
input and display of required updated information is termed as
the response time. So in this method, the response time is very less as
compared to online processing.

Real-time systems are used when there are rigid time requirements
on the operation of a processor or the flow of data and real-time systems
can be used as a control device in a dedicated application. A real-time
operating system must have well-defined, fixed time constraints, otherwise
the system will fail. For example, Scientific experiments, medical imaging
systems, industrial control systems, weapon systems, robots, air traffic
control systems, etc.

There are two types of real-time operating systems.

Hard real-time systems guarantee that critical tasks complete on
time. In hard real-time systems, secondary storage is limited or missing

and the data 1s stored in ROM. In these systems, virtual memory is almost
never found.

Soft real-time systems are less restrictive. A critical real-time task
gets priority over other tasks and retains the priority until it completes.
Soft real-time systems have limited utility than hard real-time systems. For
example, multimedia, virtual reality, Advanced Scientific Projects like

undersea exploration and planetary rovers, etc.
[https://www.tutorialspoint.com/operating system/os_types.htm]

4.2. Fill in the table with information about advantages and disadvantages
of OS types. You can use some Internet resources if necessary

Types Advantages Disadvantages
Batch operating system | ... Lack of interaction
between the user and
the job.

Distributed operating | Better service to the
System customers.

Time-sharing operating | Provides the advantage | Problem of reliability.

systems of quick response.
Network operating Security is server | High cost of buying
System managed. and running a server.

4.3. Answer the following questions and try to explain your answer
Test yourself

Question 1. Which one of the following is not software?
(A) MS-Word

(B) MS-Excel

(C) Keyboard

(D) Microsoft windows

Solution:

Question 2. Which one of the following is acts as an interface between
the user and the computer hardware?

(A) Monitor

(B) Operating system

(C) User thread

(D) Application program

Solution:

Question 3. The only language that the computer can process or execute
is called ?

(A) Machine language

(B) Normal language

(C) Computer language

(D) High-level language

Solution:

Question 4. Which of the following software is used to control the
operations of a computer?

(A) Application Software

(B) System Software

(C) Utility Software

(D) Language Processor

Solution:

Question 5. Which one of the following software is designed to solve a
specific problem or to do a specific task?

(A) Language Processor

(B) Application Software

(C) System Software

(D) Utility Software

Solution:

Question 6. Which one of the following is not an example of an operating
system?

(A) Linux

(B) Apple macOS

(C) Microsoft Windows,

(D) None of the above

Solution:

Question 7. Which of the following is a language processor?
(A) C++ programming language

(B) Compiler

(C) Linux

(D) All of the above

Solution:

[https://www.geeksforgeeks.org/software-and-its-types/]

4.4. Translate the following sentences

l. OnepaunonHass cucreMa ABJISETCA OCHOBHBIM MPOTPAMMHBIM
o0OecrieueHEM, KOTOPOE YIPABIAET BCEM amnmapaTHbIM U APYruM
POTPaMMHBIM 00ECIICUCHUEM Ha KOMITBIOTEPE.

2. OnepanioHHasT CUCTEMa, Takxke u3BecTHaga kKak «OCy,
B3aUMOJICHCTBYET C amnmapaTHbIM OOECIEUEHUEM KOMIBIOTEpA U
NPEOCTABIISIET CIYXKObI, KOTOpPhIE MOTYT HCIHOJIb30BaTh
MPUIOKECHUSL.

3. OmnepaniMoHHbIE CHUCTEMBI TaK)K€ BKJIOYAIOT B CEOS MHOXKECTBO
MPOTPAaMMHBIX TPOAYKTOB, TaKMX KakK OOIIWE CUCTEMHBIE CITY>KOBI,
OuonnoTekn U UHTEPPENCH MPUKIATHOTO MPOrpaMMHUPOBAHUS
(API), kotopsie pa3paOOTYMKU MOTYT MCIOIL30BaTh IJI HAIMUCAHUS
mporpamMm, padoTaroIIKUX B ONEPAITMOHHON CUCTEME.

4. boMPIIMHCTBO MPOrPaMMHBIX NPWIOKEHAW HANUCAHO JJIA
ONEPAIIMOHHBIX CHUCTEM, YTO MO3BOJSET OINEPAMOHHOW CHUCTEME
JieJaTh MHOTO PaOOTHI.

5. Hanpumep, mnpu 3amycke Minecraft Bwl 3amyckaete ero B
OIIEPALIMOHHOW CUCTEME.

6. Minecraft He JOKEH TOYHO 3HATh, Kak paboOTaeT KaxIbli
OTHEJIbHBIN aIlapaTHbI KOMIIOHEHT.

7. Minecraft wucmonb3yer paznuuHbie (YHKIIMA OINEpaliMOHHOMN
CUCTEMbI, a OIEpalMOHHAas CUCTEeMa TMEePEeBOJUT HUX B
HU3KOYPOBHEBBIE AIIapAaTHbIE HHCTPYKIIUH.

8. Ilo KOIWMYeCTBY OJHOBPEMEHHO paboTarouux MNporpamm
ONEpallMOHHbIE CUCTEMbI JIEJIAT HA OJHO33JauyHble U
MHOI'033a]Ia4yHbIE.

Key answers to the test 4.3.

1. The correct option is C, i.e., Keyboard. Because a keyboard is not
software, as it is a hardware device (input device).

2. The correct option is B, i.e., Operating System. Because an operating
system provides an interface to the user, which helps the user to interact
with the computer system.

3. The correct option is A, i.e., Machine language. The only language that
the computer can process or execute is called machine language as this
language is capable of telling the computer explicitly what to do.

4. The correct option is B, i.e., System Software. There are two types of
software: system software and application software. System Software is
used to control the operations and also controls a computer’s internal
functioning and hardware devices.

5. The correct option 1s B, i.e., Application Software. Because a software
that performs special functions or provides function which are much more
than basic operation of the computer are application software.

6. The correct option is D, i.e., None of the above. Because Linux, Apple
macOS, Microsoft Windows are the examples of operating systems.

7. The correct option is B, 1.e., Compiler. Because a language processor is
designed or used to convert program code to machine code. So, a compiler
is a language processor and used in C/C++ programming language.

UNIT 4. What is Computer Programming?
Coding vs. Programming

Learning objectives
= to acquire basic knowledge about computer programming
= to understand the main purpose of programming
= to understand the difference between coding and programming

Key words and phrases. Give Russian equivalents and remember the
meanings of the key words and phrases.

Programming language; to accomplish; intelligible; a sequence of
instructions; expertise; source code maintenance; machine code; to
process; reverse engineering; to assign; syntax; tools; outcome;
proficient; application domain; central processing unit; coding basics;
a piece of code; to have responsibility

Before reading the text watch the video from
https://www.youtube.com/watch?v=C9FIbhRVYdc&ab channel=LiveLess
ons to get some information on the topic

1. Read the following text and do the exercises given after it

Programming is the process of taking an algorithm and encoding it
into a notation, a programming language, so that it can be executed by a
computer. Although many programming languages and many different
types of computers exist, the important first step is the need to have the
solution. Without an algorithm there can be no program.

Computer science is not the study of programming. Programming,
however, is an important part of what a computer scientist does.
Programming is often the way that we create a representation for our
solutions. Therefore, this language representation and the process of
creating it becomes a fundamental part of the discipline.

What is computer programming?

¢ Computer programming is the process of designing and building
an executable computer program to accomplish a
specific computing result or to perform a specific task.

Programming involves tasks such as: analysis,
generating algorithms, profiling algorithms' accuracy and resource
consumption, and the implementation of algorithms in a
chosen programming language (commonly referred to as coding).

The source code of a program is written in one or more languages
that are intelligible to programmers, rather than machine code, which is
directly executed by the central processing unit. The purpose of
programming is to find a sequence of instructions that will automate the
performance of a task (which can be as complex as an operating system)
on a computer, often for solving a given problem. Proficient programming
thus often requires expertise in several different subjects, including
knowledge of the application domain, specialized algorithms, and
formal logic.

Tasks accompanying and related to programming
include: testing, debugging, source code maintenance, implementation
of build systems, and management of derived artifacts, such as
the machine code of computer programs. These might be considered part
of the programming process, but often the term software development is
used for this larger process with the term programming, implementation,
or coding reserved for the actual writing of code. Software
engineering combines engineering techniques with software development
practices. Reverse engineering is a related process used by designers,
analysts and programmers to understand and re-create/re-implement.

What is coding?
¢ Code is the language used by computers to understand and process
our requests.

Coding is vital to the way our modern world operates, yet many
people don’t realize it. If you’re on any webpage, just right click your
mouse pad and click on ‘View Page Source,’ scroll through, and see if you
can understand anything. There’s a lot of information about the webpage
there, which you probably don’t know, but this is your first experience
with coding basics (HTML, CSS, etc.).

Techopedia defines coding as “assigning a code or classification to
something.” This is essentially the way that humans communicate with
machines. And, 1t all started in the 1950s, when the invention and
development of coding languages was in full swing. Many of the coding
languages created then are still used today, like FORTRAN, LISP and
COBOL.

Key differences between coding and programming

How do coding and programming fit into the software development
industries? There are a few key differences to know between the two:

Skills needed: Coders don’t necessarily have to be skilled in
programming, but programmers should be knowledgeable with the bigger
picture and should understand coding. Programmers not only have to write
code, they also have to understand algorithms to ensure that the code they
write is optimized in the best possible way.

Difficulty: If you want to be a coder, you need to learn all about
programming language. As a programmer, you’ll need to know this as well
as how various algorithms work.

Work scope: When putting together software, as a coder, you’re
responsible for putting together a specific piece of code for part of the
program. As a programmer, you have more responsibility as you need to
look at the bigger picture and ensure that the software runs smoothly on all
fronts.

The information in this chart from Hackr.io provides a great
summary of the key differences between coding and programming.

Key points Coding Programming

Skills It is a process to convert a set | Has a wider scope so apart from
of instructions into a language | coding it also involves defining
that the computer can | requirements, writing pseudo code,
understand testing and building executables

Scope As a coder, you need to know | As a programmer, you need high-
the syntax of the programming | level thinking and analytical skills
language apart from coding skills

Tools Eclipse, Bootstrap, Delphi, | To add on to the coding tools other
ATOM and many more tools such as Git and Github,

Database Tools, Analytical tools
such as Apache Spark, Presentation
tools, Cloud tools are also essential.

Outcome A working piece of code The whole application, a software

product or a website

Support Extensive developer | Extensive community support is
community support is | available
available

[https://www.lighthouselabs.ca/en/blog/coding-vs-programming]

1. Text-based Assignments

1.1. Give English equivalents of the following words and word
combinations:

KomupoBanue anroputMa B HOTAILMIO; BBIMOJHATHCS KOMITBIOTEPOM;
SI3BIKOBOE TIPEJICTABJIICHNE, MCXOMHBIM KOJ MPOTPaMMBbI; JOCTYIHBIN s
IMOHUMAaHHUSI; OIBITHBIN; OOCITy)KMBaHHE HCXOIHOTO KOJQ; PEBEPCHUBHOE
(oOpartHoe) IIPOEKTHPOBAHUE; MIOCJIeI0BATEIbHOCTD KOMaH/I;
IpocMaTpyuBaTh IYTEM MPOKPYTKH; HCHOJB3YIOTCS JO CHX IIOp;
M300peTeHre; OTBEYaTh 3a YTO-JI.; CO3JaHHUE MCIOJHICMBIX KOJOB;
ITOMHUMO HaBBIKOB KOJUPOBAHUS; MO IJIEpKKa COOOIIECTRA.

1.2. Using suffixes -al, -able, -ory, ive, etc., give adjectives which are
related to the following verbs. Use them in your own sentences

to change to value

to program to structure
to create to expense
to regulate to control

1.3. Match the terms with their definitions

1. API a) a set of rules for grammar and spelling. In
other words, it means using character
structures that a computer can interpret.

2. Software b) a collection of binary digits or bits that the
computer reads and interprets.
3. Syntax c¢) a collection of instructions that enable the

user to interact with a computer, its
hardware, or perform tasks.

4. Machine code d) aprocess of analyzing a computer
program and removing its logical or
syntactical errors.

5. Implement e) achieve or complete successfully

6. Accomplish f) put into effect

7. Debugging g) a document with information required by
an individual or organization to apply for a
position, financial grant, or another limited
resource.

8. Application h) a set of routines, protocols, and tools for

building software applications. APIs allow
programmers easier entry into another
company's program or service.

1.4. Answer the following questions.

1) What are the key differences between coding and programming?

2) What does proficient programming require?

3) What are the tasks accompanying and related to programming?

4) Do people realize the importance of programming in our modern
world? Why?

5) How is the code program written?

6) What do you mean by extensive community support?

1.5. Complete one of the profiles for the following positions. You can use
some phrases, for example:

I graduated in ... My first job was in ...

It involved monitoring and ...

I am responsible for ... operations. The job involves management too.

My background is... I was attracted by... I have always been fascinated by
the...

Working abroad is a big priority for me too and that’s one of the main
reasons I chose ...

I’m moving job this year to... for ... years. I’'ll be based in an office in ...
Another great thing about my job is that...

Professionally, when you’re a woman you have to prove you’re as good as
a man.

... because so many aspects are technology dependent.

After my training period in... over, [plan to ...

Another ...years, I returned to Paris and spent ... years working on
designing....

Computer and | System Computer Database
1S Manager Administrator programmer administrator

2. Focus on Grammar

2.1. Complete the sentences with the correct tense form of the verbs in
brackets

a. Active voice

1. They (to test) the program and (to detect) the bugs by 3 p.m. tomorrow.
2. This company (to play) an important role in multimedia development
since its very inception. 3. She never (to be able) to fix the problem.
4. They (not to install) the updates yet. 5. You ever (to watch) TV on the
Internet? 6. He (to study) some high-level computer languages by next
year.

b. Passive Voice

1. After the program (to be improved) it (to be published) as an updated
version. 2. All the articles on programming languages (to be translated) by

next Friday. 3. Five networks for large companies (to be set up) recently.
4. A flowchart (to be designed) by 3 p.m. yesterday. 5. The program
already (to be translated) into machine language.

2.2. Transform the following sentences with the verbs in the Active
Voice into Passive

1) Once you've made a program, you can save it and share it with your
friends and family.

2) Finally, after you do the calculation, you want to display the result on
the screen.

3) Computer programmers use specialized languages to communicate
with computers, applications and other systems to get computers and
computer networks to perform a set of specific tasks.

4) George noted that students build software in online labs.

5) Programmers design Assembly language to be easily translated into
machine language.

6) Dutch programmer Guido van Rossum developed the open-source
language Python in 1991.

7) Another approach is to use a language designed for Web scripts for
the browser execute it.

2.3. Put in the to-infinitive form. (Some may be continuous, perfect or in
Passive). Comment on the form of the infinitive.
Use these verbs: take, talk, interfere, design, do, weigh, speak.

1) It is very easy about functionalities, because they are
tangible.

2) It will enable us the reports on our own.

3) He seemed something in his mind.

4) There’s nothing with this new program.

5) You know how I hate in other people’s business.

6) She was too timid :
7) He seemed his defeat quietly.

3. Discussion
3.1. Discuss the following questions

1) What does the phrase “a good programmer” mean to you?

2) What abilities/skills should a good programmer have?

3) Api or library? Which is more important?
https://www.youtube.com/watch?v=0VvTvOHy91Q&ab channel=Si
mplyExplained

4) Give some examples of the main programming areas.

5) Which programming languages are important now?

3.2. Discuss with your partner some amazing Great Programming Quotes
about software development (by Jeremy Morgan #programming)

= "Programming isn't about what you know; it's about what you can
figure out.” - Chris Pine
Especially important for beginners. At first, we're so anxious about
knowing everything, especially language syntax. Problem-solving is the
skill we end up using most.
= "The only way to learn a new programming language is by writing
programs in it." - Dennis Ritchie
Programmers are mostly "learn by doing" types. No amount of academic
study or watching other people code can compare to breaking open an
editor and start making mistakes.
= "Sometimes it's better to leave something alone, to pause, and that's
very true of programming." - Joyce Wheeler
When managing developers I would always encourage getting up and
walking away from the computer when you have a problem. Some of your
best solutions will come to you when you're not at the machine.
= "In some ways, programming is like painting. You start with a blank
canvas and certain basic raw materials. You use a combination of
science, art, and craft to determine what to do with them." - Andrew
Hunt
Outsiders question whether programming is art. Programmers don't.
= "Testing leads to failure, and failure leads to understanding." - Burt
Rutan
Some developers hate testing. However, shifting your attitude and
embracing it makes you a better developer.

= "The best error message is the one that never shows up." - Thomas
Fuchs
Remember this the next time you decide to focus on some great error
reporting.
= “The most damaging phrase in the language is.. it's always been done
this way” - Grace Hopper
To be a programmer long term, you have to love change. You can't just
tolerate it, you have to love it.

4. Additional reading

4.1. Read the text to yourself and answer the questions below to see how
well you understand the topic

Quantum computing has been seeing increased attention over the last
decade, since these computers, which function according to the principles
of quantum physics, have enormous potential. Today, most researchers
believe that these computers will one day be able to solve certain problems
faster than classical computers, since to perform their calculations they use
entangled quantum states in which various bits of information overlap at a
certain point in time. This means that in the future, quantum computers
will be able to efficiently solve problems which classical computers cannot
solve within a reasonable timeframe.

This quantum supremacy has still to be proven conclusively.
However, some significant technical advances have been achieved
recently. In late summer 2019, a quantum computer succeeded in solving a
problem -- albeit a very specific one -- more quickly than the fastest
classical computer.

For certain "quantum algorithms," i.e. computational strategies, it is
also known that they are faster than classical algorithms, which do not
exploit the potential of quantum computers. To date, however, these
algorithms still cannot be calculated on existing quantum hardware
because quantum computers are currently still too error-prone.

Utilizing the potential of quantum computation not only requires the
latest technology, but also a quantum programming language to describe
quantum algorithms. In principle, an algorithm is a "recipe" for solving a
problem; a programming language describes the algorithm so that a
computer can perform the necessary calculations.

Today, quantum programming languages are tied closely to specific
hardware; in other words, they describe precisely the behaviour of the
underlying circuits. For programmers, these "hardware description
languages" are cumbersome and error-prone, since the individual
programming instructions must be extremely detailed and thus explicitly
describe the minutiae needed to implement quantum algorithms.

Computer scientists refer to computer languages that abstract from
the technical details of the specific type of computer as high-level
programming languages. Silq is the very first high-level programming
language for quantum computers. High-level programming languages are
more expressive, meaning that they can describe even complex tasks and
algorithms with less code. This makes them more comprehensible and
easier to use for programmers. They can also be used with different
computer architectures.

[Abridged from
https://www.sciencedaily.com/releases/2020/06/200615115820.htm]

1) Utilizing the potential of quantum computation requires
a) the latest technology

b) a quantum programming language and the latest technology
C) a quantum programming language

2) High-level programming languages can describe
a) complex tasks and algorithms with less code.

b) complex tasks and algorithms with much code
c) complex algorithms

3) Today, are tied closely to specific hardware.
a) software programs
b) quantum programming languages
c¢) high-level languages

4) For programmers, these "hardware description languages" are
a) easily managed and error-prone

b) not easily managed and error
c) cumbersome and error-prone

5) Computer scientists refer to computer languages that abstract from
the technical details of the specific type of computer as
a) high-level programming languages
b) low-level programming languages
c) high-level and low-level programming languages

4.2. Read and translate the following text

How the brain is programmed for computer programming?

Countries around the world are seeing a surge in the number of
computer science students. Enrolment in related university programs in the
U.S. and Canada tripled between 2006-2016 and Europe too has seen
rising numbers. At the same time, the age to start coding is becoming
younger and younger because governments in many different countries are
pushing K-12 computer science education. Despite the increasing
popularity of computer programming, little is known about how our brains
adapt to this relatively new activity. A new study by researchers in Japan
has examined the brain activity of thirty programmers of diverse levels of
expertise, finding that seven regions of the frontal, parietal and temporal
cortices in expert programmer's brain are fine-tuned for programming. The
finding suggests that higher programming skills are built upon fine-tuned
brain activities on a network of multiple distributed brain regions.

"Many studies have reported differences between expert and novice
programmers in behavioural performance, knowledge structure and
selective attention. What we don't know is where in the brain these
differences emerge," says Takatomi Kubo, an associate professor at Nara
Institute of Science and Technology, Japan, and one of the lead authors of
the study.

To answer this question, the researchers observed groups of novices,
experienced, and expert programmers. The programmers were shown 72
different code snippets while under the observation of functional MRI
(fMRI) and asked to place each snippet into one of four functional
categories. As expected, programmers with higher skills were better at
correctly categorizing the snippets. A subsequent searchlight analysis
revealed that the amount of information in seven brain regions
strengthened with the skill level of the programmer: the bilateral inferior
frontal gyrus pars triangularis (IFG Tri), left inferior parietal lobule (IPL),
left supramarginal gyrus (SMQG), left middle and inferior temporal gyri
(MTG/IT), and right middle frontal gyrus (MFQG).

"Identifying these characteristics in expert programmers' brains
offers a good starting point for understanding the cognitive mechanisms
behind programming expertise. Our findings illuminate the potential set of
cognitive functions constituting programming expertise," Kubo says.

More specifically, the left IFG Tri and MTG are known to be
associated with natural language processing and, in particular, semantic
knowledge retrieval in a goal-oriented way. The left IPL and SMG are
associated with episodic memory retrieval. The right MFG and IFG Tri are
functionally related to stimulus-driven attention control.

"Programming is a relatively new activity in human history and the
mechanism is largely unknown. Connecting the activity to other well-
known human cognitive functions will improve our understanding of
programming expertise. If we get more comprehensive theory about
programming expertise, it will lead to better methods for learning and
teaching computer programming," Kubo says.

4.3. Write a short summary of the text (Task 4.2) in English
4.4. Translate the following sentences

1. TeXxHUKU-IPOTPAMMUCTHI PAOOTAIOT B BBIYMCIMUTENIBHBIX IIEHTPax,
IT-xomMnanusax, OaHkax, oOpa30BaTeNbHBIX YyupexaeHusix. OHu
3aHUMAIOTCS pa3paboTKOU MPOTPAMMHOI0 obecrieueHus,
YCTPAaHEHUEM HEMOJAJO0K B padOTe BBIUUCIUTEIbHON TEXHUKH,
HaJIaJIKo 000py0BaHuUs, O0OYUYCHHUEM MO0JIb30BaTEIICH.

2. IIporpaMMHUpOBaHKE€ OCHOBBIBACTCSI Ha MCIOJb30BAHUU SI3BIKOB
IpOrpaMMUPOBAHMS], HA KOTOPBIX 3aMKCHIBAIOTCA HUCXOJHBIE TEKCThHI
porpaMm.

3. Ilocne Ttoro, kak OBUIO MPUHATO pEHIEHHE O BO3MOXHOCTHU
IpOrpaMMHOM peanu3alui IOCTABJICHHON 3a7adyu, HEOO0XOJMMO
MOCTPOUTH AJITOPUTM €€ PEIICHHUS.

4. BoiOupass mpodeccuio MporpaMMHUCTa, CIEAyeT OBbITh TOTOBBIM K
TOMY, YTO yuye0a HEe KOHUMUTCS HHU TOCJI€ YHUBEPCUTETa, HU TOCIIE
MOJIY4YeHUS! BBICOKOM JIOJDKHOCTU. JTa chnenuduka, B TEPBYIO
ouepesib, MOSBISETCS H3-3a TOro, 4to cdepa HHPOPMAITMOHHBIX
TEXHOJIOTHUM JOCTAaTOYHO MOJIOJIA U TTIOCTOSIHHO pa3BUBACTCH.

5. IIporpamMmmupoBaHue — 3TO OOBSICHEHHE MAIllMHE YTO, B KAKOM BHJIC
M KaKk HY>XHO TOJIyYUTh MOJIb30BaTeIt0. To €cTh 3TO CBO€oOpa3Hoe
HCKYCCTBO IMEPeBOa MOKEIaHUN YeJIOBEKa Ha SI3bIK MAIIUHBI.

UNIT 5. Programming Languages

Learning objectives
= to acquire basic knowledge about programming languages as an
engineering tool
= to understand the main difference between high-level and low-level
languages
= to understand the role of assembly language in computer
programming

Key words and phrases. Give Russian equivalents and remember the
meanings of the key words and phrases.

Collection of instructions; low-level languages; high-level languages;
sequences; assembly language; sophisticated means; peripheral
devices; syntax; client-server application; shell scripting languages;
markup language; to compile; to interpret; statements; expertise;
imperative form; declarative form; to split into; extension; to be
treated as; dominant implementation.

Before reading the text watch the video from
https.://www.youtube.com/watch?v=EGQh5SZctaE&ab channel=Codecad
emy to get some information on the topic. What do you already know
about the topic?

Read the following text and do the exercises given after it

Programming 1is an important
1 engineering tool. It is a process of writing
a computer program using computer
language. Computer programs are
| collections of instructions that tell a
. computer how to interact with the user
and the computer hardware and how to
process data. Our work would have been very demanding and time
consuming without programming.

Programming languages can be classified as either low-level
languages or high-level languages. Low-level programming languages or
machine languages are the most basic type of programming languages and
can be understood directly by a computer. It is extremely tedious to
program directly in machine language because instructions are written as
sequences of 1s and Os called bits. Assembly languages are used to make
machine language programs easier to write. For example, assembly
languages use abbreviations such as ADD, SUB, MPY to represent
instructions. The program is then translated into machine language by
software called an assembler.

Assembly language is designed to be easily translated into machine
language. Although blocks of data may be referred to by name instead of
by their machine addresses, assembly language does not provide more
sophisticated means of organizing complex information. Like machine
language, assembly language requires detailed knowledge of
internal computer architecture. It is useful when such details are important,
as in programming a computer to interact with peripheral devices (printers,
scanners, storage devices, and so forth).

High-level languages are relatively sophisticated sets of statements
utilizing words and syntax from human language and therefore easier to
read, write, and maintain. Examples of high-level languages are Pascal
(widely used as a beginner or as a teaching language), C (used to write
system software, graphics and commercial programs), C++ (primarily
utilized with system / application software, drivers, -client-server
applications), Cobol (popular for business applications), Fortran (used for
scientific and mathematical applications), Java (designed to run on the
Web), Visual Basic (used to create Windows applications) and shell
scripting languages such as those found in the UNIX, Linux and Mac OS
X environment. The languages used to create Web documents are called
markup languages, they use instructions (markups) to format and link text
files, for example, HTML (Hypertext Markup Language).

Regardless of what language you use you need to translate it into
machine language so that a computer can understand and process it. There
are two ways to do this: to compile the program and interpret the program.
In a compiled language, the programmer writes more general instructions
and a compiler (a special piece of software) automatically translates these
high level instructions into machine language. The machine language is
then executed by the computer. A large portion of software in use today is

programmed in this way. In an interpreted programming language, the
statements that the programmer writes are interpreted as the program is
running. This means they are translated into machine language on the fly
and then are executed as the program is running.

People communicate instructions to the computer in programming
languages and the choice of the language depends on the type of computer,
the sort of program, the expertise of the programmer, etc. [10].

Thousands of different programming languages have been created,
and more are being created every year. Many programming languages are
written in an imperative form (i.e., as a sequence of operations to perform)
while other languages use the declarative form (i.e. the desired result is
specified, not how to achieve it).

The description of a programming language is usually split into the
two components of syntax (form) and semantics (meaning). Some
languages are defined by a specification document (for example, the C
programming language is specified by an ISO Standard) while other
languages (such as Perl) have a dominant implementation that is treated as
a reference. Some languages have both, with the basic language defined by
a standard and extensions taken from the dominant implementation being
common.

Programming language theory is a subfield of computer science that
deals with the design, implementation, analysis, characterization, and

classification of programming languages.
[https://en.wikipedia.org/wiki/Programming language]

1. Text-based Assignments

1.1. Give FEnglish equivalents of the following words and word
combinations:

B3aumogelictBue ¢ T0JIb30BaTEIEM; HEMOCPEACTBEHHO; ab0peBUATypa;
Ha3bIBAEMbIX OWTaMHU; TIEPEBECTH HA MAIIWHHBIM S3BIK; CJIOXKHAS
uHOpMalMsl; BHYTPEHHSS AapXUTEKTypa KOMIIBIOTEpPA; BBIPAKEHUS; B
NIEPBYIO0 OYEPEb; A3BIK PA3METKU T'MIIEPTEKCTOB; KOMIIUIMPYEMBIN A3BIK;
UHTEpPIPETUPYEMbIN s3bIK; Oosbiasg goist [1O; HeMenneHHo, «Ha JIETy»;
ONBIT IPOrPaMMHUCTA; HOPMATUBHBIM HOKYMEHT;, CIPABOYHOE OMNUCAHUE,
yKa3aTedb.

1.2. Match the following words with their definitions

1. Syntax

a) the creation of an executable program from
code written 1n acompiled programming
language.

2. High-level Language

b) a program used to convert or translate
programs written in assembly code by humans
to machine code (binary) that can be understood
by the computer.

3. Compile

c) a set of rules for grammar and spelling. In
other words, it means using character structures
that a computer can interpret.

4. A script or scripting
language

d) that consists of easily understood keywords,
names, or tags that help format the overall view
of a page and the data it contains. E.g.
BBC, HTML, SGML, and XML.

5. Assembler

e) is a computer programming language that
isn't limited by the computer, designed for a
specific job, and is easier to understand. It is
more like human language and less like machine
language.

6. Markup language

f) is a computer language with a series
of commands within a file capable of being
executed without being compiled. E.g.
Perl, PHP, and Python, JavaScript.

1.3. Make up English-Russian pairs of the words equivalent in meaning:

1. Time-consuming, 2. sophisticated, 3. to run, 4. client-server application,
5. environment, 6. tedious, 7. to treat.

1) BbICOKOW CIIOXKHOCTH, 2) UHTEPIPETUPOBaTh, 3) TPYIOEMKUH,
4) yTOMUTENbHBIN, 5) 3allyCKaTh Ha BBINOJHEHUE, 6) BHEIITHUE YCTPONCTBA
CUCTEMBI, 7) KIIMEHT-CEPBEPHOE MPUIIOKEHUE.

1.4. Read the text again and decide if the following statements are true or
false

1) Computer programs are collections of instructions that tell a user
how to interact with a computer.

2) Our work would have been very demanding and easy without
programming.

3) High-level programming languages or machine languages are the
most basic type of programming languages and can be understood
directly by a computer.

4) Assembly language is designed to be easily translated into machine
language.

5) High-level languages are relatively sophisticated sets of statements
utilizing words and syntax from human language and therefore easier
to read, write, and maintain.

6) Visual Basic 1s used to write system software, graphics and
commercial programs.

7) In a compiled language, the programmer writes more general
instructions and a compiler (a special piece of software)
automatically translates these high level instructions into machine
language.

8) The description of a programming language is usually split into the
three components of syntax (form) and semantics (meaning) and
links between them.

1.5. Answer the following questions on the text

1) Which programming languages do you use? Why do you use them?

2) What are the examples of high-level languages?

3) Assembly language doesn’t require detailed knowledge of internal
computer architecture, does it?

4) What does “to compile the program” mean?

5) What does programming language theory deal with?

6) What would happen if you forgot to include the correct punctuation
in a statement?

2. Focus on Grammar

2.1. Choose the right variant

Algorithmic languages

1) Algorithmic languages to express mathematical or symbolic
computations.
A)are designed B) designed C) was designed

2) The C programming language in 1972 by Dennis

Ritchie and Brian Kernighan at the AT&T Corporation for
programming computer operating systems.
A)has been developed B) was developed C) developed

3)C with assembly language the power to exploit all the
features of a computer’s internal architecture.
A)share B) share C) 1s shared

4) Its capacity to structure data and programs through
the composition of smaller units is to that of ALGOL.
A)comparable B) compare C) comparability

5) ALGOL had recursive subprograms—procedures that
invoke themselves to solve a problem by reducing it to a

smaller problem of the same kind.
A)can B) might C) could

6) ALGOL contributed a notation for the structure of a
programming language, Backus—Naur Form, which in some variation
became the standard tool for stating the syntax (grammar) of
programming languages.
A)describing B) description C) being described

7) ALGOL introduced block structure, in which _ program is
composed of blocks that might contain both data and instructions and
have the same structure as an entire program.

A) the B) ---- C) a

8) C uses a compact notation and provides the programmer the
ability to operate with the addresses of data as well as with their
values.

A)with B) - C) for

9) The first important algorithmic language
was FORTRAN (formula translation), designed 1in 1957 by

an IBM team John Backus.
A)leading B) lead by C) led by
10) FORTRAN for scientific computations with real

numbers and collections of them organized as one- or
multidimensional arrays.
A)was taken B) was intended C) was composed

3. Discussion

3.1. Discuss the following questions in small or large groups. You can use
the Internet resources if necessary

1) What challenges did you run into when choosing these languages?

2) Your friend says: “I just started learning to code, and at times, I feel
like I’'m simply not smart enough to understand concepts right away.
How do I prevent getting stuck and what’s the best way to keep
learning and moving through material?” What would you suggest?

3) How do you identify a problem in programming?

3.2. Give a short explanation of the computer term ‘programming
languages’

3.3. Suggested topics for Presentations and Reports

1) Types of programming languages.

2) Business-oriented languages — SQL (structured query language) and
COBOL (common business oriented /anguage).

3) The main problems faced by programmers.

4. Additional Reading
4.1. Read and translate the following text 'Programming Paradigms'

Programming languages mimic the operations of the computer they
are running on. Therefore the computer they are designed for has a
significant effect of how the programming language is created and which

characteristics are attributed to the language. Various attributes of a
programming language will determine the computational paradigm of the
language. The following are different paradigms.

Imperative Paradigm: Instructions are executed sequentially,
variables are used to represent memory locations, and assignments are
used change the values of variables. Imperative languages are also referred
to as procedural languages, due to the sequence of statements that
represent the commands. Most programming languages currently used are
imperative.

Functional Paradigm: Based on mathematics and the abstract
notion of a function in lambda calculus. This paradigm bases the
description of computation on the evaluation of functions or the
application of functions to known values. Languages incorporating the
functional paradigm are sometimes called applicative languages. The
functional paradigm uses a functional call, where the program evaluates a
function, transfers values as parameters to certain functions, and returns
values from functions. LISP is an example of a functional programming
language.

Logic paradigm: Logic programming is based on the symbolic
logic. These languages are based on a set of statements that describe the
truth of a statement, rather than giving a sequence of sentences that are
restricted to be executed in a particular manner. These languages have no
need for loops, and the only necessity is the statement of properties of the
computation. Since all properties are declared and there is no sequence of
execution, logic programming is referred to as declarative programming.
The only widely used logic based language is Prolog.

Object-oriented Paradigm: This paradigm is based on the idea of
an object. Objects can be described as a collection of locations together
with all the operations that can change the values of these memory
locations. An example of an object is a variable. In many object-oriented
languages, objects are put into classes that represent all of the objects with
the same characteristics. These classes define four things. First, a
constructor allocates memory and provides an initial value for the data of
an object. Second, a way to access the value from the first part of the class
is determined. Then the procedures are executed and a value is defined.
Object-oriented programming is found in numerous new languages and
seems to be a staple for the future of programming.

// Purpose: This program find the absolute wvalue of an
integer
// without using a function
1/
#include <iostream>
using namespace std;
int main()
{
int number;
int abs number;
// Ask for input
cout << "This program finds the absolute wvalue of an
integer." << endl;
cout << "Enter an integer (positive or negative): ";
cin >> number;
// Find the absolute value
if (number >= 0)
{

}

else
abs number = -number;
// Print out output
cout << "The absolute value of " << number << " is "
<< abs number;
cout << endl;
return 0;

abs number = number;

H
[http://www.csun.edu/~vgc30838/Projecth.html]

4.2. Write a short summary of the text given above (Task 4.1.)
4.3. Answer the following questions
Test yourself
Introduction to programming test questions

1) What is a programming language?
A)Written English
B) An artificial language used to program a computer
C) A language used in pseudocode
2) What is machine code?
A) The serial number of a computer
B) A programming language that a computer understands
C) The make and model of a computer
3) What is a program?
A)A series of step-by-step instructions that tell a computer how to
solve a task
B) A video that is watched on a computer

C) A flowchart written on a computer
4) What is a statement?
A)A box in a flowchart
B) A keyword in a programming language
C) A calculation performed in a programming language
5) What is an instruction?
A)A box in a flowchart
B) A calculation performed in a programming language
C) One or more statements grouped together to instruct the computer
to perform a task
6) What does the statement 'print' do?
A)Output a hard copy of a program to a printer
B) Output a message on the screen
C) Print a hard copy of a flowchart to a printer
7) What does the statement 'while' do?
A) Tell the computer to wait for a while before continuing with the
program
B) Implement selection
C) Implement a loop
8) What does the statement 'def' do?
A) Creates a function or a procedure
B) Implement a loop
C) Implement selection
9) What do the statements 'if' and 'else' do?
A)Implement selection
B) Implement a loop
C) Tell the computer to wait for a while before continuing with the
program
10) How many statements are there in this line of code: print ("If I am
17,1 can drive a car")?
A)There are two statements - "print' and 'if
B) There are no statements
C) There 1s one statement - 'print'
[https://www.bbc.co.uk/bitesize/guides/zts8d2p/test]

4.4. Translate the following sentences

1) SI3pik mporpaMMHpOBaHUS — 3TO HAOOp JIGKCUYECKUX,
CUHTAKCUYECKUX M CEMaHTUYECKUX IPaBUJI, KOTOPBIC MPHIyMad
JI0JIA, YTOOBI CO3/1aBaTh MPOrPAMMBI.

2) 3yunTh A3BIK 10 Ha4YaJIbHOTO YPOBHS MOXHO 3a 6—10 mecsiieB, HO
€CJIU OITUOUTHCS C BBIOOPOM, S3bIK MOXKET YCTAPETh, a BbI NIOTEPSETE
BpEMs U JICHBTU.

3) UtoOn1 OTCJIC)KUBATH BOCTPEeOOBAHHOCTH SI3bIKOB
IpOrpaMMHUPOBaHMS, KOMIIAHWHM COCTABJISIOT CIICIHAIbHBIC
PEUTHHT .

4)C — oIMH W3 CcaMbIX CTapblX W TMOMYJSPHBIX S3bIKOB

nporpamMmMmupoBanus. OH <«JIETKH» U OBICTPBIHA, IOATOMY €ro
UCIIOJIB3YIOT TaM, TJIe HYXHA BBICOKAs MPOU3BOJAUTEIBHOCTD.
Hampumep, mist co3gaHust ApaiiBepoB, ONEPAIIMOHHBIX CHCTEM HWIIU
ITO st MUKPOKOHTPOJIIIEPOB.
5)Java — kpoccmiardpopmennsiii (cross platform) s3bIK ¢ GONBIIAM
KOJIMYECTBOM OMOIMOTEK U OOJBIIUM COOOIIECTBOM Pa3pabOTUUKOB.
6) KpoccraropMeHHOCTh — 5TO BO3MOKHOCTH HAIMCATh [IPOrPaMMy
OJINH Pa3 W Cpa3y IOJIb30BaThCS €l Ha HECKOJIBKUX OTEPaIllMOHHBIX
cucreMax: Windows, Linux u MacOS.
brnarogaps 6ubGanoTekam Java mogoUIeT MPaKTHUECKH JIJIsT BCETO: pabOTHI
c rpaduKol, 3ByKOM, CO3aHUsI HEOOIBIIINX UTP.

Key answers to the task 4.3.
1.B); 2.B); 3. A); 4.B); 5.C); 6.B); 7.C); 8. A); 9. A); 10.C).

UNIT 6. Object-oriented Programming (OOP)

Learning objectives
= to acquire basic knowledge about object-oriented programming and
languages types in it
= to understand the main features of object-oriented programming
= to consider the difference between OOP and traditional programming

Key words and phrases. Give Russian equivalents and remember the
meanings of the key words and phrases used in the text

Self-contained entities; formal set of rules; relational database; object
database; encapsulation; inheritance; code modularity; routines; at the
bottom of a hierarchy; to be inherited; polymorphism; to be
integrated; memory allocation; to dispense; ‘“‘event-driven”
programming; to succeed; portable; data addresses; feature; to
extend; interrelated applications; to be similar to smth.

Read the following text and do the exercises given after it

A programming language structure
wherein the data and their associated |
processing ("methods") are defined as self-
contained entities called "objects." The norm
today, object-oriented programming (OOP)
languages, such as C++ and Java, provide a
formal set of rules for creating and managing
objects. The data are stored in a traditional
relational database or in an object database if the data have a complex
structure.

There are three major features in object-oriented programming that
makes them different than non-OOP languages: encapsulation, inheritance
and polymorphism.

Encapsulation Enforces Modularity

Encapsulation refers to the creation of self-contained modules that
bind processing functions to the data. These user-defined data types are

called "classes," and one instance of a class is an "object." For example, in
a payroll system, a class could be Manager, and Pat and Jan could be two
instances (two objects) of the Manager class. Encapsulation ensures good
code modularity, which keeps routines separate and less prone to conflict
with each other.

Inheritance Passes '""Knowledge' Down

Classes are created in hierarchies, and inheritance allows the
structure and methods in one class to be passed down the hierarchy. That
means less programming is required when adding functions to complex
systems. If a step is added at the bottom of a hierarchy, only the processing
and data associated with that unique step needs to be added. Everything
else is inherited. The ability to reuse existing objects is considered a major
advantage of object technology.

Polymorphism Takes any Shape

Object-oriented programming allows procedures about objects to be
created whose exact type is not known until runtime. For example, a
screen cursor may change its shape from an arrow to a line depending on
the program mode. The routine to move the cursor on screen in response to
mouse movement would be written for "cursor," and polymorphism allows
that cursor to take on whatever shape is required at runtime. It also allows
new shapes to be easily integrated.

The following compares basic OOP terms with traditional
programming.

OOP Traditional Programming
class define data + processing
object data + processing
attribute data (a field)
method function
message function call
instantiate allocate a structure

Relational modeling

Employee Department Job
Table Table Table

Object modeling

Employee

Class

Manager Secretary Clerk
Class Class Class

Fig. 9. Relational vs. Object Modeling

Instead of separate employee, department and job tables, an employee
class contains the data and processing for all employees. Each subclass
(manager, secretary, etc.) has its own data and processing but also inherits
everything from the employee class. Changes made to the employee class
affect every subclass.

OOP Languages

Today, C++, C#, Java, JavaScript, Visual Basic.NET and Python are
popular object-oriented languages.

The C++ language, developed in the mid-1980s, extended C by
adding objects to it while preserving the efficiency of C programs. It has
been one of the most important languages for both education and industrial
programming. Large parts of many operating systems were written in C++.
C++, along with Java, has become popular for developing commercial
software packages that incorporate multiple interrelated applications. C++
is considered one of the fastest languages and is very close to low-level
languages, thus allowing complete control over memory allocation and
management. This very feature and its many other capabilities also make it
one of the most difficult languages to learn and handle on a large scale.

C# (pronounced C sharp like the musical note) was developed in
2000. C# has syntax similar to that of C and C++ and is often used for
developing games and applications for the Microsoft Windows operating
system.

In the early 1990s Java was designed by Sun Microsystems, Inc., as
a programming language for the World Wide Web (WWW). Although it
resembled C++ in appearance, it was object-oriented. In particular, Java
dispensed with lower-level features, including the ability to manipulate

data addresses, a capability that is neither desirable nor useful in programs
for distributed systems. In order to be portable, Java programs are
translated by a Java Virtual Machine specific to each computer platform,
which then executes the Java program. In addition to adding interactive
capabilities to the Internet through Web “applets,” Java has been widely
used for programming small and portable devices, such as
mobile telephones.

Visual Basic was developed by Microsoft to extend the capabilities
of BASIC by adding objects and “event-driven” programming: buttons,
menus, and other elements of graphical user interfaces (GUIs). Visual
Basic can also be used within other Microsoft software to program small
routines. Visual Basic was succeeded in 2002 by Visual Basic .NET, a
vastly different language based on C#, a language with similarities to C++.

The open-source language Python was developed by Dutch
programmer Guido van Rossum in 1991. It was designed as an easy-to-use
language, with features such as using indentation instead of brackets to
group statements. Python is also a very compact language, designed so that
complex jobs can be executed with only a few statements. In the 2010s,
Python became one of the most popular programming languages, along

with Java and JavaScript.
[https://www.computerlanguage.com/results.php?definition=object-
oriented+programming|
[https://www.britannica.com/technology/computer-programming-language/]

1. Text-based Assignments

1.1. Give English equivalents of the following words and word
combinations:

B koTtopoM maHHBIE W METOJBI; CaMOJOCTAaTOYHBIN; COXpaHIThH B 0ase
JAHHBIX; OCOOEHHOCTH; HACIICIOBAaHHE CBOMCTB; MpPUMEP; 00ECIeUnBaTh;
MOIYJIBHOCTh KOJa; HMEIOIIWA TEHACHIMIO, J00aBlIcHUE (DYHKITHIA;
CITIOCOOHOCTh TIOBTOPHOTO MCITOJIB30BAaHMS; OCHOBHOE MPEUMYIIECTBO;
BpeMs 3allyCKa, B OTBET HA; MPOTPaMMHBIM PEXKUM; BIUATh HA YTO-II.;
COXpaHATh, JIETKUH B HMCIOJb30BaHHUM, J00aBICHHE OTCTYIIOB; BMECTO
CKOOOK; KOMITIAKTHBIN S3BIK.

1.2. Put the phrases below into the right word order. Use them in the
sentences of your own

a) called self-contained "objects" entities —
b) types data user-defined —
c¢) a hierarchy is of added the bottom at —
d) an arrow change from shape to a its line —
e) programs the efficiency while of preserving C —
f) with complex statements executed jobs can only be a few —

1.3. Match the following words with their definitions

1. Modularity a) a database that maintains a set of separate, related
files (tables), but combines data elements from the
files for queries and reports when required.

2. relational b) run a program, which causes the computer to carry
database out its instructions.

3. polymorphism | ¢) a database that is managed by an object-oriented
database management system (ODBMS).

4. object d) In object technology, the creation of self-
database contained modules that contain both the data and the
processing.

5. encapsulation | e) the characteristic of a system that has been divided
into smaller subsystems which interact with each
other.

6. execute f) meaning many shapes. In object technology,
polymorphism is exhibited when a request (message)
produces different results based on the object that it
1s sent to.

1.4. Answer the following questions on the text

1) Where are the data stored in OOP?
2) What are the major features in OOP?
3) What does encapsulation refer to and what does it ensure?

4) How are classes created?
5) What is the difference between C++ and C #?

6) When was the open-source language Python developed?
7) What does ‘a very compact language’ mean?

1.5. Read the text again and decide if the following statements are true
or false

1) Object-oriented programming languages, such as C++ and Java,
provide a formal set of rules for creating and managing objects. The
data are stored in a traditional relational database.

2) There is one major feature in object-oriented programming that
makes them different than non-OOP languages. It is polymorphism.

3) Classes are created in hierarchies, and inheritance allows the
structure and methods in one class to be passed down the hierarchy.

4) Object-oriented programming allows procedures about objects to be
created whose exact type is not known until runtime.

5) The C++ language, developed in 2000s, extended C by adding
objects to it while preserving the efficiency of C programs.

6) In the early 1990s Java was designed by Sun Microsystems, Inc., as a
programming language for the World Wide Web (WWW).

7) Visual Basic can also be used within other Microsoft software to
program small routines.

8) Java and JavaScript are not used for programming small and
portable devices, such as mobile telephones.

9) In the 2010s, Python became one of the most popular programming
languages, along with Java and JavaScript.

2. Focus on Grammar

2.1. We can join two independent clauses (sentences) together using
conjunctive adverbs. Conjunctive adverbs show cause and effect,
sequence, contrast, comparison, or other relationships.

The most common of these are:

Accordingly Indeed Otherwise
Afterwards Likewise Similarly
Also Moreover Still
Consequently Nevertheless Therefore

However Nonetheless

2.2. Learn the following rules and examples. Make up your own
sentences with some of the conjunctive adverbs listed above.

Learning the Rules: Examples of Conjunctive Adverbs

Rule 1: Complete Sentences Connected With an Adverbial Require a
Semicolon

Complete sentence +; + adverbial connecting word + complete sentence.
E.g. Jeffrey doesn’t want to learn programming languages; nevertheless,
his mother is making him attend classes on programming.

Nevertheless is the adverbial connecting word in the sentence above. It’s
functioning the same way as a coordinating connecting word such as but,
so, and yet. However, the difference here is that a coordinating conjunction
does not require a semicolon, while an adverbial connecting word does.

Rule 2: You Can Use Connecting Adverbials with a Single Main
Clause
You can use connecting adverbials at the beginning, middle, and end of a
main clause. Here are some examples:
a) Frank was put on hold by his cable company for nearly two
hours. Eventually, he got in touch with a customer service rep.
b) Jan has never gotten the high score in GTA. She is
determined, nonetheless, to improve her score.
c) There was something about studying for his exam on programming
that made him anxious. He had no trouble studying
informatics, however.

Rule 3: Depending on the Sentence, You Might Not Need a Comma
When Using a Connecting Adverbial

Sometimes, a break in the sentence is too weak to justify halting the reader
with a comma. In fact, a comma can make a sentence sound choppy.

E.g. Harrison certainly didn’t like it when his teacher called on him to
answer a question in class. Harrison, certainly, didn’t like it when his
teacher called on him to answer a question in class.

These are important skills for both academic and professional writing.
Look at more conjunctive adverb examples below.
a) Paul copied his classmate’s homework. As a result, his teacher

docked his grade.

b) Stacy went to the computer store; however, they were out of her

favorite smartphone.

c) Your work isn’t bad; in fact, you probably deserve a raise.
d) She developed writers block; consequently, she didn’t write another

novel for years.

e) They forgot class was canceled for the week; undoubtedly, they had

3.1.

trouble figuring out how to spend their free time.

3. Speaking and Writing

Here are some amazing quotes and sayings about Object Oriented
you must read. Discuss them with your partner

Object-oriented programming offers a sustainable way to write
spaghetti code. It lets you accrete programs as a series of patches. -
Author: Paul Graham

Mac blinked. That smile should be registered as a deadly weapon. -
Author: Kaje Harper

Never walk away from someone who deserves help; your hand is
God's hand for that person. - Author: Eugene H. Peterson
Object-oriented programming as it emerged in Simula 67 allows
software structure to be based on real-world structures, and gives
programmers a powerful way to simplify the design and construction
of complex programs. - Author: David Gelernter

Every dependency is like a little dot of glue that causes your class to
stick to the things it touches. - Author: Sandi Metz

I invented the term 'Object-Oriented', and I can tell you I did not
have C++ in mind. - Author: Alan Kay

Possibly the only real
object-oriented system in working

order. (About Internet

n Koy - QUCTESTATS.COM,

3.2. Explain in your own words each feature in object-oriented
programming

3.3. Suggested topics for Presentations and Reports

1) What are the benefits of OOP?

2) Criticism of OOP. What's Wrong With Object-Oriented
Programming?

3) Why is OOP so popular?

4) Object-oriented terminology

4. Additional reading

4.1. Read and translate the following text
Document formatting languages

Document formatting languages specify the organization of printed
text and graphics. They fall into several classes: text formatting notation
that can serve the same functions as a word processing program, page
description languages that are interpreted by a printing device and, most
generally, markup languages that describe the intended function of
portions of a document.

TeX was developed during 1977-86 as a text formatting language
by Donald Knuth, a Stanford University professor, to improve the quality
of mathematical notation in his books. Text formatting systems, unlike

WYSIWYG (“What You See Is What You Get”) word processors, embed
plain text formatting commands in a document, which are then interpreted
by the language processor to produce a formatted document for display or
printing. TeX marks italic text, for example, as {\it this is italicized},
which is then displayed as this is italicized.

TeX largely replaced earlier text formatting languages. Its powerful
and flexible abilities gave an expert precise control over such things as the
choice of fonts, layout of tables, mathematical notation, and the inclusion
of graphics within a document. It is generally used with the aid of “macro”
packages that define simple commands for common operations, such as
starting a new paragraph; LaTeX is a widely used package. TeX contains
numerous standard “style sheets” for different types of documents, and
these may be further adapted by each user. There are also related programs
such as BibTeX, which manages bibliographies and has style sheets for all
of the common bibliography styles, and versions of TeX for languages
with various alphabets.

PostScript is a page-description language developed in the early
1980s by Adobe Systems Incorporated on the basis of work at Xerox
PARC (Palo Alto Research Center). Such languages describe documents in
terms that can be interpreted by a personal computer to display the
document on its screen or by amicroprocessorin a printer or
a typesetting device.

PostScript commands can, for example, precisely position text, in
various fonts and sizes, draw images that are mathematically described,
and specify colour or shading. PostScript uses postfix, also called reverse
Polish notation, in which an operation name follows its arguments. Thus,
“300 600 20 270 arc stroke” means: draw (“stroke”) a 270-degree arc with
radius 20 at location (300, 600). Although PostScript can be read and
written by a programmer, it is normally produced by text formatting
programs, word processors, or graphic display tools.

The success of PostScript i1s due to its specification’s being in the
public domain and to its being a good match for high-resolution laser
printers. It has influenced the development of printing fonts, and
manufacturers produce a large variety of PostScript fonts.

SGML (standard generalized markup language) is an
international standard for the definition of markup languages; that is, it is
a metalanguage. Markup consists of notations called tags that specify the
function of a piece of text or how it is to be displayed. SGML emphasizes

descriptive markup, in which a tag might be “<emphasis>.” Such a markup
denotes the document function, and it could be interpreted as reverse video
on a computer screen, underlining by a typewriter, or italics in typeset text.
SGML is used to specify DTDs (document type definitions). A DTD
defines a kind of document, such as a report, by specifying what elements
must appear in the document—e.g., <Title>—and giving rules for the use
of document elements, such as that a paragraph may appear within a table
entry but a table may not appear within a paragraph. A marked-up text
may be analyzed by a parsing program to determine if it conforms to a
DTD. Another program may read the markups to prepare an index or to
translate the document into PostScript for printing. Yet another might
generate large type or audio for readers with visual or hearing disabilities
(3400).
[https://www.typescriptlang.org/docs/handbook/typescript-from-scratch.html]

4.2. Speak about TeX, PostScript, SGML and their characteristics
4.3. Translate the following sentences

1) OOBEKTHO-OPUEHTUPOBAHHOE IMPOTPAMMHUPOBAHUE IIPEACTABISAET
coOol MmyTh JJIg OBaieHus npodeccueit mporpammucta. C MOMEHTa
U300peTeHUsT KOMIIbIOTEpa METOJOJIOTHU MPOrpaMMHUPOBaHUS
IpaMaTHYECKH HU3MEHSIOTCS, IPHUCIIOCA0IMBasICh K pacTyIleu
CJIO’KHOCTH MPOTPAMM.

2) C poctom mporpamMm OblT H300peTeH s3bIK AcceMmOnep, Tak 4TO
IpOrpaMMHUCT MOT paboTaTh C OOJBIIMMU W 0O0Jiee CIOKHBIMU
nporpaMMaMH, HUCIONB3Ysl CHUMBOJIMYECKOE TMPEICTABICHUE IS
MaIIMHHBIX UHCTPYKIUH.

3) B koHIIe KOHITOB OBLIM BBEACHBI SI3BIKM BBICOKOTO YPOBHS, JAIOIIUE
IporpaMMUCTy OOJbIIIE CPEICTB JJIi pEUICHHUs MPOOJIeMbl
CIOKHOCTH TporpamMM. llepBbIM MIMPOKO pacHIpOCTPaHEHHBIM
s3pikoM Ob1 FORTRAN. Xotrs FORTRAN Obul OYeHb
BIICUATIISIONIMM TIEPBBIM IIIarOM, €ro TPYAHO CUUTATh SI3BIKOM,
00€eCcreunBaIOIINM SICHOCTh U JIETKOCTh TOHUMAHUSI POTPAMM.

4) Bexamu B pa3BUTHU NPOTPAMMHUPOBAHUS SIBISIOTCS METOJIBI,
KOTOpBIC CIIyXaT PEUICHUI0 MPOOJIeMbl BO3PACTAIONIEH CIOKHOCTU
nporpamM. Ha kak7ioM 3Tarie 3TOro MmyTH HOBBIM MOJAXOJ BKJIOUYAET
B ce0s JTydIlie 3JIEMEHTHI TPEABITYIIINX METOIOB.

5) OOBEKTHO-OPUEHTUPOBAHHOE MPOrPAMMHUPOBAHUE BIUTAIO B CeOs
Ay4lIWE UJEU CTPYKTYPHOTO IPOrpaMMUPOBAaHUS 1 KOMOMHUPYET UX
C HOBBIMM MOIIHBIMH KOHUEMUUSIMHU, TO3BOJSIOMIMMHU YBUICTh
3a/1a4y IpOrpaMMUPOBAHKS B HOBOM CBETE.

6) OOBEKTHO-OPUEHTUPOBAHHOE MPOTPAMMHUPOBAHUE MO3BOJISAET JIETKO
pPa3NoKUTh 3a/ladyy Ha MOATPYNIbl B3aUMOJCUCTBYIOUIUX YaCTEi.
3aTeM MOXHO TmpeoOpa3oBaTh ATU MNOATPYNIBI B €IUHMIIBL,
Ha3bIBa€MbI€ O0OBEKTaAMHU.

7) Bce 00BEKTHO-OPMEHTHUPOBAHHBIC S3BIKM HMMEIOT TpU OOIIHE
KOHLIETILINYU: UHKATCYJISIHIO, TOTUMOP(PU3M U HACIIEIOBAHUE.

UNIT 7. Elements of Programming. Control Structures

Learning objectives
= to understand the difference between control structures and data
structures
= to acquire basic knowledge about three basic control structures
= to consider an example of a subprogram and its function

Key words and phrases. Give Russian equivalents and remember the
meanings of the key words and phrases used in the text

To express algorithms; procedural languages; sequence; iterative; to
assign values; to find the roots; conditional; quadratic equation;
looping; variable; to assume; discriminant; subroutine; absolute-value
function; multiplication; to be implemented; repetitions;
approximation; tractable subprograms; a simple restatement; a square
root; paths of execution; recursive subprograms; factorial function.

Before reading the text watch the video from
https://study.com/academy/lesson/5-basic-elements-of-programming.html.
Render its content in Russian

Read the following text and do the exercises given after it

Despite notational differences, contemporary computer languages
provide many of the same programming structures. These include
basic control structures and data structures. The former provide the means
to express algorithms, and the latter provide ways to organize information.

Control structures

Programs written in procedural languages, the most common kind,
are like recipes, having lists of ingredients and step-by-step instructions for
using them. The three basic control structures in virtually every procedural
language are:

1. Sequence—combine the liquid ingredients, and next add the dry
ones.

2. Conditional—if the tomatoes are fresh then simmer them, but if
canned, skip this step.

3. Iterative—beat the egg whites until they form soft peaks.

Sequence is the default control structure; instructions are executed
one after another. They might, for example, carry out a series of arithmetic
operations, assigning results to variables, to find the roots of a quadratic
equation ax” + bx + ¢ = 0. The conditional IF-THEN or IF-THEN-ELSE
control structure allows a program to follow alternative paths of
execution. Iteration, or looping, gives computers much of their power.
They can repeat a sequence of steps as often as necessary, and appropriate
repetitions of quite simple steps can solve complex problems.

These control structures can be combined. A sequence may contain
several loops; a loop may contain a loop nested within it, or the two
branches of a conditional may each contain sequences with loops and more
conditionals. In the “pseudocode” used in this article, “*” indicates
multiplication and “«—” is used to assign values to variables. The following
programming fragment employs the IF-THEN structure for finding one
root of the quadratic equation, using the quadratic formula:

- —b =+ +/b% — dac
2a :

The quadratic formula assumes thatais nonzero and that the
discriminant (the portion within the square root sign) is not negative (in
order to obtain a real number root). Conditionals check those assumptions:

IF a =0 THEN

ROOT « —¢/b

ELSE

DISCRIMINANT « b*b — 4*a*c

[F DISCRIMINANT >0 THEN

ROOT « (—b + SQUARE ROOT(DISCRIMINANT))/2*a

ENDIF

ENDIF

The SQUARE ROOT function used in the above fragment is an
example of asubprogram (also called a procedure, subroutine, or
function). A subprogram is like a sauce recipe given once and used as part
of many other recipes. Subprograms take inputs (the quantity needed) and
produce results (the sauce). Commonly used subprograms are generally in
a collection or library provided with a language. Subprograms may call
other subprograms in their definitions, as shown by the following routine
(where ABS is the absolute-value function). SQUARE ROOT
is implemented by using a WHILE (indefinite) loop that produces a good

approximation for the square root of real numbers unless x is very small or
very large. A subprogram is written by declaring its name, the type of
input data, and the output:

FUNCTION SQUARE ROOT(REAL x) RETURNS REAL

ROOT « 1.0

WHILE ABS(ROOT*ROQOT —x) > 0.000001

AND WHILE ROOT « (x/ROOT + ROOT)/2

RETURN ROOT

Subprograms can break a problem into smaller, more tractable
subproblems. Sometimes a problem may be solved by reducing it to a
subproblem that is a smaller version of the original. In that case the routine
is known as a recursive subprogram because it solves the problem by
repeatedly calling itself. For example, the factorial function in
mathematics (n! = n-(n—1)---3-2-1—i.e., the product of the first n integers),
can be programmed as a recursive routine:

FUNCTION FACTORIAL(INTEGER n) RETURNS INTEGER

IF n=0 THEN RETURN 1

ELSE RETURN 7 * FACTORIAL(n—1)

The advantage of recursion is that it is often a simple restatement of a
precise definition, one that avoids the bookkeeping details of
an iterative solution.

At the machine-language level, loops and conditionals are
implemented with branch instructions that say “jump to” a new point in the
program. The “goto” statement in higher-level languages expresses the
same operation but is rarely used because it makes it difficult for humans
to follow the “flow” of a program. Some languages, such as Java and Ada,
do not allow it.

1. Text-based Assignments

1.1. Give English equivalents of the following words and word
combinations:

Paznuuuga B HanucaHWM; COBPEMEHHBIN; YIPABISAIONMIAs CTPYKTYpa;
MOOIEPAIMOHHAsE WHCTPYKIMS, IMOCIEA0BATEIBHOCTD; YIPaBIISIONIAs
CTPYKTypa IO YMOJYAHMIO; BBITIOJHATH apu(METUUECKUE OIepalnH;
HaXOAUThb KOPEHB; MO3BOJIATh; COOTBETCTBYIOIIME IMMOBTOPEHUS;, PEUIATh
npoOJeMbl; COAEpKaTh, OINEpaTOp IMKIA C YCJIOBUEM; JOMYIICHUS;

QITOPUTM BBIYMCIICHUI; (QyHKIMS aOCOTIOTHOTO 3HAYEHUS;, PEKYpPCHUBHAs
IOANPOrpaMMa; TOYHOE OIIPECIICHUE.

1.2. Find synonyms for the following words from the text

1. Contemporary, 2. control, 3. structure, 4. to assign, 5. to declare, 6. root,
7. precise, 8. to follow, 9. routine, 10. to repeat.

1) command, 2) present (new, late), 3) to iterate, 4) manner of making,
5) to give (value), 6) to proclaim, 6) procedure (operation), 7) stem,
8) well-defined, 9) to practice, 10) order.

1.3. Match the following words with their definitions

1. Conditionals

a) an operation that requires successive executions of
instructions or processes.

2. Iterative

b) a set of instructions in a program that perform a

operation task. Programs are made up of many routines, which
are also called '"subroutines" and very often
"functions."

3. Loop c) to be represented by a figure, symbol, or formula.

4. While loop d) the action of doing something over and over again.

5. Routine ¢) a mathematical statement saying that two amounts
or values are the same, for example 6x4=12x2.

6. Equation f) a loop that continues to repeat while a condition is
true.

7. Express g) statements that only run under certain conditions.

1.4. Answer the following questions on the text

1) How many basic control structures are there in virtually every
procedural language?

2) What may a sequence contain?

3) How is SQUARE ROOT implemented?

4) What is the main advantage of recursion?

5) Which type of programming structure requires each instruction to be
performed in order, with no possibility of skipping an action or
branching off to another action?

6) The if/else statement conditionally evaluates two statements. Is it
correct?

7) Which control structure is used for repeated operations?

8) Which control structure is used to group statements that provide a
single logical operation together?

1.5. Use the correct word to fill in the gaps in the following sentences

a single logical operation a series of statements
variables a test

default to alter

a subprogram While

Program Flow of Control

Sequence is composed of a) which are
executed one by one from top to bottom. Sequence
is the b) flow of control for many
programming languages. All of the programs
illustrated so far have used this flow of control for
their execution.

Selection is used c) the flow of control
when a choice needs to be made between two or
more actions. Often the choice is based on the state
of some d) in the program. This control
structure 1s commonly specified using the
keywords 1 and Else.

Loop 1s a control structure that causes a set of
statements to be executed repeatedly. With each
loop iteration, €) is performed to determine
whether the loop should continue or end. Often this
control structure is specified using the key word f)

Subprograms are a way of grouping statements that

Subprogram .
cut provide g) . An example subprogram
‘I:—_" might be SquareRoot which could find the square
root of a number and return the result to the main

program. The keyword Cal I indicates h)

Key answers to task 1.5.
a) a series of statements
b) default
c) to alter
d) variables
e) to test
f) while
g) a single logical operation
h) a subprogram

2. Focus on Grammar

2.1. Study the table of Functions of the Infinitive and make up your own

sentences

Subject To break a problem into | Pa36uts npoGiemy Ha
smaller, more tractable | Oojiee Mekue, Oomee
subprograms is not | MOHATHBIC MTOITPOrPAMMBI
difficult. HECJI0KHO.

Adverbial modifier of | We can also use the | Mn TaKXKe MOXKEM

purpose (can be introduced | computer's memory o | HICIIOJIB30BATh aMsITh

by in order and so as) store other types of data | kommbroTepa TUTST
such as letters and | XpaHeHus HAPYTUX THUIIOB
characters like 'a', '?', or | maHHBIX, TaKMX KaK OyKBBI

'Z'.

U CHUMBOJIBI, TaKHE Kak
«an, «M» umm «Zy».

Adverbial modifier of
result (it chiefly occurs
after adjectives modified
by the adverbs enough and

The finds are too few to be
spoken about.

Haxomok caumkoM Mao,
9TOOBI 0 HUX (MOYKHO
OBLJI0) TOBOPUT.

too, and after the | The rule has been so |IIpaBuio 6b110 ChopMyH-
conjunction as) formulated as to be easily | poBaHo Takum o00Opazom,
observed by everybody. 9TOOBI BCE MOIJIH JIETKO
ero co0JIr01aTh.
Predicative A typical way of | TunuunbiM ciocobom
specifying the type of a | yka3anus tuna
variable is to write the type | nepemeHHOM sABIsIETCS
name before the variable | 3anmucs uMeHn Tuna nepea
identifier. UIeHTU(PUKATOPOM
TIEPEMEHHOM.
Attribute This is the main advantage | 910 ocHOBHOE
to be taken into MPEUMYIIECTBO, KOTOPOE
consideration. HY>KHO YYHUTBIBATb.
Object The conditional IF-THEN | YcinoBHas ynpasistonias

or [IF-THEN-ELSE control
structure allows a program
to follow alternative paths
of execution.

ctpykrypa [F-THEN wnin
IF-THEN-ELSE
MO3BOJIIET IpOrpamme
CJIeI0BaTh ajabTep-
HATUBHBIM CIIOCO0aM
BBITIOJTHEHUS.

2.2. Comment on the form and functions of the Infinitives and translate the
following sentences

1) Input is one of the two elements that are used by every program
because every program needs some data to work with.

2) The bank wants to make sure it isn't someone who's not you trying
to access your account.

3) Computers can perform all kinds of mathematical operations and
functions, from the simple addition or subtraction needed to update
your checking account balance after a withdrawal or deposit, to the
complex calculus needed to put a satellite into orbit.

4) To use these elements, one imports them.

5) We can use assignment statements to give new names to existing
functions.

6) One of our goals in this chapter is to isolate issues about thinking
procedurally.

7) My aim was to create a program that could interact with humans like
the modern-day chatbots.

8) To display output on the terminal the ‘echo’ command is used
followed by the text to display.

3. Discussion
3.1. Discuss the following questions with your partner
1) How do programs work, and how can you build them?
2) How many important control structures do algorithms require? What
are they?
3.2. Suggested topics for Presentations and Reports
1) The role of SemiColon in various Programming Languages

2) Structures in C++
3) A two-way selection and a multi-way selection control structures.

4. Additional Reading

4.1. Read and translate the following text about some declarative
languages

Declarative languages

Declarative languages, also called nonprocedural or very high level,
are programming languages in which (ideally) a program specifies what is
to be done rather than how to do it. In such languages there is less
difference between the specification of a program and its implementation
than in the procedural languages described so far. The two common kinds
of declarative languages are logic and functional languages.

Logic programming languages, of which PROLOG (programming
in logic) is the best known, state a program as a set of logical relations
(e.g., a grandparent is the parent of a parent of someone). Such languages
are similar to the SQL database language. A program is executed by an
“inference engine” that answers a query by searching these relations
systematically to make inferences that will answer a query. PROLOG has
been used extensively in natural language processing and
other Al programs.

Functional languages have a mathematical style. A functional
program is constructed by applying functions to arguments. Functional
languages, such as LISP, ML, and Haskell, are used as research tools in
language development, in automated mathematical theorem provers, and in
some commercial projects.

Scripting languages are sometimes called little languages. They are
intended to solve relatively small programming problems that do not
require the overhead of data declarations and other features needed to
make large programs manageable. Scripting languages are used for
writing operating system utilities, for special-purpose file-manipulation
programs, and, because they are easy to learn, sometimes for considerably
larger programs.

Perl was developed in the late 1980s, originally for use with
the UNIX operating system. It was intended to have all the capabilities of
earlier scripting languages. Perl provided many ways to state common
operations and thereby allowed a programmer to adopt any convenient
style. In the 1990s it became popular as a system-programming tool, both
for small utility programs and for prototypes of larger ones. Together with

other languages discussed below, it also became popular for programming

computer Web “servers.” (2200)
[https://www.britannica.com/technology/computer-programming-
language/Visual-Basic]

4.2. Describe some declarative languages in class

UNIT 8. Elements of Programming. Data Structures

Learning objectives
= to understand basic and advanced concepts of data structure
= to consider different types of data structures

Key words and phrases. Give Russian equivalents and remember the
meanings of the key words and phrases used in the text

Types of data; to specify; to keep track; integers; real numbers;
character strings; the array; a collection of vectors; record
components or fields; to sum; dynamic allocation; a bintree; abstract
data types; to hide; appropriate; to omit; information hiding;
reusability; abstraction; to make public; lookup operation; insertion
operation.

Before reading the text watch the video from
https://www.youtube.com/watch?v=DuDz6B4cqVc&ab channel=CrashC
ourse. Render its content in Russian and explain how you understand the
concept data structure

Read the following text and do the exercises given after it

11001
10001 11100110
0010 110001 11000110

Whereas control structures 00101001 01011010 1100

- - 1 1100000100 100
organize algorithms, data structures 0082,31111 101001110
organize information. In particular, data 00101 11010 10

. 10010 101

structures specify types of data, and thus 00100
which operations can be performed on them, g
while eliminating the need for a 0000110

programmer to keep track of memory
addresses. Simple data structures include Data Stl'llCtlll‘e
integers, real numbers, Booleans (true/false), and characters or character

strings. Compound data structures are formed by combining one or more
data types.

The most important compound data structures are the array,
a homogeneous collection of data, and the record,
a heterogeneous collection. An array may represent a vector of numbers, a
list of strings, or a collection of vectors (an array of arrays, or
mathematical matrix). A record might store employee information—name,
title, and salary. An array of records, such as a table of employees, is a
collection of elements, each of which is heterogeneous. Conversely, a
record might contain a vector—i.e., an array.

Record components, or fields, are selected by name; for example,
E.SALARY might represent the salary field of record E. An array element
is selected by its position or index; A[10] is the element at position 10 in
array A. A FOR loop (definite iteration) can thus run through an array with
index limits (FIRST TO LAST in the following example) in order to sum
its elements:

FOR i < FIRST TO LAST

SUM « SUM + 4[]

Arrays and records have fixed sizes. Structures that can grow are
built with dynamic allocation, which provides new storage as required.
These data structures have components, each containing data and
references to further components (in machine terms, their addresses). Such
self-referential structures have recursive definitions. A bintree (binary tree)
for example, either is empty or contains a root component with data and
left and right bintree ‘“children.” Such bintrees implement tables of
information efficiently. Subroutines to operate on them are naturally
recursive; the following routine prints out all the elements of a bintree
(each is the root of some subtree):

PROCEDURE TRAVERSE(ROOT: BINTREE)

[F NOT(EMPTY(ROOT))

TRAVERSE(ROOT.LEFT)

PRINT ROOT.DATA

TRAVERSE(ROOT.RIGHT)

ENDIF

Abstract data types (ADTs) are important for large-scale
programming. They package data structures and operations on them,
hiding internal details. For example, an ADT table provides insertion and
lookup operations to users while keeping the underlying structure, whether
an array, list, or binary tree, invisible. In object-oriented languages, classes
are ADTs and objects are instances of them. The following object-oriented

pseudocode example assumes that there is an ADT bintree and a
“superclass” COMPARABLE, characterizing data for which there is a
comparison operation (such as “<” for integers). It defines a new ADT,
TABLE, that hides its data-representation and provides operations
appropriate to tables. This class is polymorphic—defined in terms of an
element-type parameter of the COMPARABLE class. Any instance of it
must specify that type, here a class with employee data (the
COMPARABLE declaration means that PERS REC must provide a
comparison operation to sort records). Implementation details are omitted.

CLASS TABLE OF <COMPARABLE T>

PRIVATE DATA: BINTREE OF <T>

PUBLIC INSERT(ITEM: T)

PUBLIC LOOKUP(ITEM: T) RETURNS BOOLEAN
END

CLASS PERS REC: COMPARABLE

PRIVATE NAME: STRING

PRIVATE POSITION: {STAFF, SUPERVISOR, MANAGER}
PRIVATE SALARY: REAL

PUBLIC COMPARE (R: PERS REC) RETURNS BOOLEAN
END

EMPLOYEES: TABLE <PERS REC>

TABLE makes public only its own operations; thus, if it is modified
to use an array or list rather than a bintree, programs that use it cannot
detect the change. This information hiding is essential to managing
complexity in large programs. It divides them into small parts, with
“contracts” between the parts; here the TABLE class contracts to provide
lookup and insertion operations, and its users contract to use only the
operations so publicized.

Advantages of Data structures
The following are the advantages of a data structure:

- Efficiency: If the choice of a data structure for implementing a
particular ADT 1is proper, it makes the program very efficient in
terms of time and space.

- Reusability: The data structure provides reusability means that

multiple client programs can use the data structure.

- Abstraction: The data structure specified by an ADT also provides
the level of abstraction. The client cannot see the internal working of
the data structure, so it does not have to worry about the

implementation part. The client can only see the interface.
[https://www.javatpoint.com/data-structure-tutorial

1. Text-based Assignments

1.1. Give English equivalents of the following words and word
combinations:

CKOHCTpyHpOBaTh aJTOPUTMBI; B YaCTHOCTH; IIEJbI€ YHCIa; OyJICBCKHE
3HAUEHHUS, COCTaBHBIE CTPYKTYpPhl JaHHBIX; COOpaHHWE OJHOPOIHBIX
JAHHBIX; 3alUCh;, HA0OOPOT, TIPEACTABIATh, MACCHBBI; HHJICKC;
ompeNesieHHas] UWTepalus;, JUHAMUYECKOEe paclpejieicHue IMaMsiTH;
nBOMYHOE (OMHApHOE) JEepeBO; MPUMEPHI, NPEICTABICHHWE JaHHBIX;
OoOHapyXUBaTh WM3MCHCHMS; IIOCJICIOBATCIIBHBIA ITOMCK; BO3MOXKHOCTH
MOBTOPHOTO HCIIOJB30BaHUsS; AOCTPAKTHBIA THUN JaHHBIX (VHUKAIbHBLU
mun OQHHBIX, ONPEOENEéHHbI 8 MEPMUHAX, NPUMEHAEMbIX K 00beKmam
onepayuu (m.e. Habopa yHKyul docmyna,).

1.2. Match the following words with their definitions:

1. Tree topology a) a group of related data values (called elements)
that are grouped together. They must be the same
data type.

2. Pseudocode b) either apointer or an array with only one

dimension. In computer graphics, the term describes
a line with a starting and ending point.

3. Array c) a special type of structure where many connected
elements are arranged like the branches of a tree. For
example, they are frequently used to organize the
computers in a corporate network, or the information
in a database.

4. Field d) a function or method that repeatedly calculates a
smaller part of itself to arrive at the final result. It is
similar to iteration.

5. Data structure

€) a computer programming language that resembles
plain English that cannot be compiled or executed,
but explains a resolution to a problem.

6. Recursive

f) a single item of data contained in a column within
a database or software program. For example, it may
be a customer name, address, or phone number.

7. Vector

g) a predefined format for efficiently storing,
accessing, and processing datain a computer
program.

1.3. Answer the following questions on the text

1) What do data structures do in terms of computer programming?

2) What do simple data structures include?

3) How is an array element selected?

4) What do an ADT table provide?

5) What is a tree data structure?

6) Which of the following data structure (arrays, records, pointers) can’t
store the non-homogeneous data elements?

1.4. Read the text again and decide if the following statements are true or

false.

1) Data structures specify types of data, and thus which operations can
be performed on them, keeping the need for a programmer to keep
track of memory addresses.

2) Compound data structures are formed by combining one or more

data types.

3) The most important compound data structures are the array,
a homogeneous collection of data, and the record,
a heterogeneous collection.

4) An array of records, such as a table of employees, is a collection of
elements, each of which is homogeneous.

5) An array element is selected by its position or index; A[10] is the
element at position 10 in array A4.

6) Arrays and records do not have fixed sizes. Structures that can grow
are built with dynamic allocation, which provides new storage as

required.

7) Abstract data types are important for large-scale programming. They
package data structures and operations on them, hiding internal
details.

8) For example, an ADT table provides insertion and lookup operations
to users while keeping the underlying structure, whether an array,
list, or binary tree, invisible.

9) The data structure specified by an ADT cannot provide the necessary
level of abstraction. The client cannot see the internal working of the
data structure.

10) The client can only see the interface.

Key answers to the task 1.2.
1.c); 2.e); 3.a); 4.0); 5.g); 6.d); 7.b).

2. Focus on Grammar

2.1. Complete the sentences using the bare infinitive or to-infinitive of the
verbs in brackets

1) She saw me (turn off) the computer.

2) Our boss usually encourages all the staff (take) the refresher courses.
3) We made her (check) all the receipts once again.

4) They didn’t dare (interrupt) my presentation.

5) He decided (continue) his programming classes.

6) What makes you (think) so?

7) He advised me (show) my design project to the manager.

8) They ordered me (leave) the office immediately.

9) We consider this company (be) the most reliable partner.

10) He helped me (analyze) all the given information.

11) I heard the negotiations (stop).

12) My parents didn’t let me (stay) there late.

13) We told our secretary (check) the mail in the evening.

14) I heard them (speak) in a loud voice.

15) Some scientists consider Mars (be covered) with vegetation.
16) Another possibility was (use) quartz.

Infinitive Constructions

Complex Object (The Objective with the infinitive construction)

Subject Predicate| Noun in the common case + infinitive

Pronoun in the objective case

He /believed [the results /of this test to have been plotted/
in the diagram.

E.g. The circumstances forced him to leave the town. —
Ob6cmosimenbcmea 3acmasuiiu (8bIHYOUNU) €20 yexamsy U3 20pood.

NOTE

After the verbs to see, to notice when they denote sense perception the
infinitive of the verb "fo be"is not used. Instead a subordinate clause is
used. E.g. We saw that he was in. — A ysuden, umo on doma.

Complex Subject (The Subjective Infinitive Construction)

Noun in the common case or A finite verb Infinitive
pronoun in the nominative case

The painter
He seemed to see nothing.
The treaty is said to have been|yesterday.
signed

The for-to-infinitive construction

preposition noun/ pronoun infinitive
They waited for the door to open.
It is useless for me to speak to him.

Eg It was easyfor me to answer that question. —
MHe necko 6v1.10 omeemums Ha 3MOmM BONPOC.

2.2. Sort out the sentences given below into corresponding columns. The
first two are done for you. Translate them

Complex 1,
Object

Complex 2,
Subject.

1) The return makes one love the farewell.

2) His policy is no policy. And this in itself is supposed to be a policy.

3) Don’t let what you cannot do interfere with what you can do.

4) The traditional toast ‘Bottoms up’ is known to be absolutely taboo in
the Navy.

5) The last drop makes the cup run over.

6) Ambassadors are said to be eyes and ears of states.

7) Diplomacy is thought to be the art of jumping into troubled waters
without making a splash.

8) Experience is said to be a comb which nature gives us when we are
bold.

9) It often happens that things turn out to be different from what they at
first appear to be.

10) You can take the horse to the water but you can’t make him drink it.

11) The decision is sure to be adopted tomorrow and we might get
acquainted with it.

12) It is true, however, as Wilkinson pointed out, that fast transitions are
more likely to have been observed than slow ones.

13) The engineer wants the workers to use soft rubber for electrical
insulation.

3. Discussion

3.1. Give a short explanation of the terms ‘Control Structure’ and ‘Data
Structure’

3.2 Discuss the following questions in class. You can use some
additional Internet resources if necessary

1) Which language is best for Data Structure and algorithms? Most
competitive programmers use C++. Can you explain why it is so?

2) How do you start learning DSA?

3) Is learning data structure and algorithms hard?

4) What are Python data structures?

5) How many days does it take to learn data structure and algorithms?

3.3. Make a report on the future prospects of using various programming
languages

S.No. | Languages Future Scope

Python, without a doubt, has a bright future in the
programming language development area,

1. Python particularly in the disciplines of data
visualisation, artificial intelligence, data science
and machine learning.

Java is widely utilised in many businesses. It may
also be used to make a variety of goods and has a
2. Java wide range of uses. It is currently the most
widely used programming language, so it’s pretty
worth learning.

C++ has a wide range of applications, and
studying it is never a bad thing. It is a very
simple language to pick up and understand. In the
industry, it has a wide range of applications.
Along with graphic designs and 3-D models, it’s
also employed in games.

3. C++

Although C is out of date in some applications, it
is not going away anytime soon. It has a wide

4. C range of real-world applications, and it will
continue to be used in the industry for many
years to come.

C# 1s a language that is gaining in popularity and
is likely to remain so in the coming years due to
its effective capabilities in producing games and
its resilience, both of which benefit the gaming
industry. It’s also quite beneficial in business
applications.

JavaScript is a widely-used programming
language. It is so extensively used that another
6. Javascript | programming language may take a long time to
replace it. It is also used in artificial intelligence
and other fields, in addition to web development.

This language should be at the top of anyone’s
learning priority list.

In today’s world, Ruby is still utilised for a large
number of applications. As a result, it’s a great
7. Ruby language to learn because you’ll be able to create
complex apps in no time. It also has robust
technology. Therefore it is still relevant today.

4. Additional Reading
4.1. Read and translate the following text

C# (/si Jarp/ see sharp)is a general-purpose, multi-paradigm
programming language. C# encompasses static typing, strong
typing, lexically coped, imperative, declarative, functional, generic, object-
oriented (class-based), and component-oriented programming disciplines.
During the development of the NET Framework, the class libraries were
originally written using a managed code compiler system called "Simple
Managed C" (SMC).

In January 1999, Anders Hejlsberg formed a team to build a new
language at the time called Cool, which stood for "C-like Object Oriented
Language". Microsoft had considered keeping the name "Cool" as the final
name of the language, but chose not to do so for trademark reasons. By the
time the .NET project was publicly announced at the July
2000 Professional Developers Conference, the language had been renamed
C#, and the class libraries and ASP.NET runtime had been ported to C#.

Hejlsberg is C#'s principal designer and lead architect at Microsoft,
and was previously involved with the design of Turbo
Pascal, Embarcadero Delphi (formerly CodeGear Delphi, Inprise Delphi
and Borland Delphi), and Visual J++. In interviews and technical papers
he has stated that flawsin most major programming languages
(e.g. C++, Java, Delphi, and Smalltalk) drove the fundamentals of
the Common Language Runtime (CLR), which, in turn, drove the design
of the C# language itself.

James Gosling, who created the Java programming language in 1994,
and Bill Joy, a co-founder of Sun Microsystems, the originator of Java,
called C# an "imitation" of Java; Gosling further said that "[C# is] sort of

Java with reliability, productivity and security deleted." Klaus Kreft and
Angelika Langer (authors of a C++ streams book) stated in a blog post that
"Java and C# are almost identical programming languages. Boring
repetition that lacks innovation," "Hardly anybody will claim that Java or
C# are revolutionary programming languages that changed the way we
write programs," and "C# borrowed a lot from Java - and vice versa. Now
that C# supports boxing and unboxing, we'll have a very similar feature in
Java." In July 2000, Hejlsberg said that C# is "not a Java clone" and is
"much closer to C++" in its design.

Since the release of C# 2.0 in November 2005, the C# and Java
languages have evolved on increasingly divergent trajectories, becoming
two quite different languages. One of the first major departures came with
the addition of genericsto both languages, with vastly different
implementations. C# makes use ofreificationto provide "first-class"
generic objects that can be used like any other class, with code
generation performed at class-load time.

Furthermore, C# has added several major features to accommodate
functional-style programming, culminating in the LINQ extensions
released with C# 3.0 and its supporting framework oflambda
expressions, extension methods, and anonymous types. These features
enable C# programmers to use functional programming techniques, such
as closures, when it is advantageous to their application. The LINQ
extensions and the functional imports help developers reduce the amount
of boilerplate code that is included in common tasks like querying a
database, parsing an xml file, or searching through a data structure,
shifting the emphasis onto the actual program logic to help improve

readability and maintainability (2800)
[https://en.wikipedia.org/wiki/C_Sharp (programming language)]

4.2. Ask an appropriate question for the response

1) C# is a general-purpose, multi-paradigm programming language.

2) Hejlsberg i1s C#'s principal designer and lead architect at Microsoft.

3) In January 1999.

4) These features enable C# programmers to use functional
programming techniques, such as closures, when it is advantageous
to their application.

5) The LINQ extensions and the functional imports.

4.3. Translate the following sentences

1) MaccuB — CTPYKTYpUPOBAHHBIM THI JaHHBIX, COCTOSIIUN U3
(UKCUPOBAaHHOTO YHCJIAa OJHOTHITHBIX 3JIEMEHTOB, OO0BEIMHEHHBIX
OJIHUM MMEHEM, TJie KaXKJIbli 3JIEMEHT UMEET CBOM HOMEep (MHICKC).

2) Kak MBI y)Xe OTMeUaau paHee, aJropuTMaM TpeOYyrOTCs JBE Ba’KHbBIC
YOPABJISIOMINE CTPYKTYPBI: IJIs UTEPALUiA U JIJIs1 BBIOOPA.

3) O6be onm mnoanepxkuBaroTca B Python B pazaumunbix (opmax.
[IporpaMMHUCTBI MOTYT BEIOMpATh TOT CIIOCOO, KOTOPKIM OyaeT 6osee
YMECTHBIM B JIAaHHBIX 00CTOSTEIbCTBAX.

4) Ilns utepanuit Python mpemmaraer cranmaptHeiii onepatop while u
O4Y€Hb MOIIHBIN omnepartop for.

5) OnepaTopbl BIOOpa MO3BOJISIOT MPOTPAMMUCTAM 3aJ1aBaTh BOTIPOCHI
Y BBITIOJIHATH Pa3IUYHbIC ICUCTBUS, OCHOBBIBASICH HA OTBETE.

6) BOJNBIIMHCTBO S3BIKOB MPOTPAMMHUPOBAHUSL MPEIOCTABISAIOT JBE
Bepcuu ToJIe3HbIX KoHcTpykumii: ifelse u if. Ilpocroit npumep
OMHApPHOTO MCIOJIB30BaHUS oreparopa ifelse:

if n<o:
print("Sorry, value is negative")
else:

print(math.sqrt(n))

7) TlocKOJIbKY OOJIBIIMHCTBO CHUHTAKCHUYECKUX KOHCTpykiui Perl
OCHOBaHBI Ha s3bike C, TO JUIsl MPOrPaMMHUCTOB, 3HAIOIINX A3bIKU C,
C++, C#, Java, JavaScript, Python unu PHP, cunrakcuc Perl Oyner
OYCHb 3HAKOMBIM.

8) B HeKoTOpBIX ciaydasx (HampuMmep, IMpH 3amucu aTpuOyToB (aitia B
Unix) HarngaHee u300pa3uTh YMClIa B BOCBMEPUYHON CHCTEME
CUMCIICHUS.

9) Becbma yn1o6HO, yTO mpeoOpa3oBaHUs MEXKIY CTPOKAMHU U YUCIaMHU
BBITIOJIHSIIOTCSI aBTOMAaTUYECKM B 3aBUCHUMOCTH OT KOHTEKCTa
BBIP)KCHUS, B KOTOPOM OHH MCTIOJIb3YIOTCHL.

10) B s3bike Perl qst yTouHeHUs cMbIciia S3BIKOBBIX KOHCTPYKIIUN
4acTO UCIOIb3YETCA MOHATUE KOHTEKCTA, MO/ KOTOPHIM TOHUMAETCS
IporpaMMHOE OKpYKEHHE JJIeMEHTa s3blka (IepEeMEHHOM,
MOAMPOTPAMMBI U TaK Jajiee), OMpeAeIsIolee ero NCIoJIb30BaHue.

UNIT 9. Web — Development. Types of Web — development

Learning objectives

= to acquire basic knowledge about web development and its types
= to consider the difference between Web development and web
design

Key words and phrases. Give Russian equivalents and remember the
meanings of the key words and phrases used in the text

Intranet; functionality; content management systems (CMS); plain
text; Web content development; client liaison; network security
configuration; Agile methodologies; front-end developer; back-end
developer; full-stack developer; database technology; layout; fonts; to

run smoothly; drop-down menu; scrollbars; checkout function; User

Experience Design; User Interface Design; visual design; to be
broken down into; relational
(RDBMS).

database management system

Read the following text and do the exercises given after it

.
\
"IN EEEE ‘
@mPEE 00000008

Web development

is the process of building websites and
applications for the internet, or for a private network known as an intranet.

Web development is not concerned with the design of a website; rather,
it’s all about the coding and programming that powers the website’s
functionality.

From the most simple, static web pages to social media platforms and
apps, from e-commerce websites to content management systems

(CMS) - all the tools we use via the internet on a daily basis have
been built by developers.

Web development can range from developing a simple single static
page of plain text to complex web applications, electronic businesses, and
social network services. A more comprehensive list of tasks to which Web
development commonly refers, may include Web engineering, Web
design, Web content development, client liaison, client-side/server-side
scripting, Web server and network security configuration, and e-commerce
development.

For larger organizations and businesses, Web development teams can
consist of hundreds of people (Web developers) and follow standard
methods like Agile methodologies while developing Web sites. Web
development may be a collaborative effort between departments rather
than the domain of a designated department.

There are three kinds of Web developer specialization: front-end
developer, back-end developer, and full-stack developer. Front-end
developers are responsible for behavior and visuals that run in the user
browser, while back-end developers deal with the servers.

Types of web development

Web development can be broken down into three layers: client-side
coding (frontend), server-side coding (backend) and database technology.
Client-side

Client-side scripting, or frontend development, refers to everything
that the end user experiences directly. Client-side code executes in a web
browser and directly relates to what people see when they visit a website.
Things like layout, fonts, colours, menus and contact forms are all driven
by the frontend.
Server-side

Server-side scripting, or backend development, is all about what goes
on behind the scenes. The backend is essentially the part of a website that
the user doesn’t actually see. It is responsible for storing and organizing
data, and ensuring that everything on the client-side runs smoothly. It does
this by communicating with the front-end. Whenever something happens
on the client-side - say, a user fills out a form - the browser sends
a request to the server-side. The server-side “responds” with
relevant information in the form of frontend code that the browser
can then interpret and display.

Database technology
Websites also rely on database technology. The database contains all
the files and content that are necessary for a website to function, storing it
in such a way that makes it easy to retrieve, organize, edit, and save. The
database runs on a server, and most websites typically use some form of

relational database management system (RDBMS).

To summarize: the frontend, backend, and database technology all work
together to build and run a fully functional website or application, and
these three layers form the foundation of web development.

FRONTEND BACKEND FULL STACK
DEVELOPERS DEVELOPERS DEVELOPERS
= (Code the fronted of = Work behind-the- = Experts in both
a website; 1.e. the scenes, building and frontend and
part that the user maintaining the backend
sees and interacts technology needed development.
with. to power the
frontend. * Guide on strategy

Bring the web
designer’s designs
to life using HTML,
JavaScript and CSS.

Ensure responsive
design.

Ensure that
everything the
frontend developer

builds is fully
functional.

Create and manage
the database.

and best practices.

Well —versed in both
business logic and
user experience.

two very different things.

Fig. 10. What does a web developer do?

The difference between web development and web design
Just like with software engineering, you might also hear the terms
“web development” and “web design” used interchangeably, but these are

Imagine a web designer and web developer working together to build
a car: the developer would take care of all the functional components, like
the engine, the wheels and the gears, while the designer would
be responsible for both the visual aspects - how the car looks, the
layout of the dashboard, the design of the seats - and for the user
experience provided by the car, so whether or not it’s a smooth drive.

Web designers design how the website looks and feels. They model
the layout of the website, making sure it’s logical, user-friendly and
pleasant to use. They consider all the different visual elements: what color
schemes and fonts will be used? What buttons, drop-down menus and
scrollbars should be included, and where? Web design also considers the
information architecture of the website, establishing what content will be
included and where it should be placed.

Web design is an extremely broad field, and will often be broken
down into more specific roles such as User Experience Design, User
Interface Design, and Information Architecture.

It is the web developer’s job to take this design and develop it into a
live, fully functional website. A frontend developer takes the visual design
as provided by the web designer and builds it using coding languages such
as HTML, CSS and JavaScript. A backend developer builds the more
advanced functionality of the site, such as the checkout function on an e-
commerce site.

In short, a web designer is the architect, while the web developer is

the builder or engineer.
[https://en.wikipedia.org/wiki/Web development]
[https://careerfoundry.com/en/blog/web-development/]

1. Text-based Assignments

1.1. Give English equivalents of the following words and word
combinations:

Co3naBath BeOcalT, craTuyeckas BeO-CTpaHUIA (CMpaHuya, KOMOpasi
Cc030aHa 3apauee U XpaHumcs 011 Nociedyuiell OmnpasKu KIueHmam),
MHCTPYMEHT, CJIOKHBIC BeO MPUIIOKCHUS, MEepeUeHb 3ajay, HCIIOJTHCHUE
CKpPHUIITOB Ha CEpBEpe, MOJepKaHUEe CBI3eH C KIUEHTAMH, COBMECTHBIC
YCUJIMS, OTBETCTBEHHBIH OTHEN, pPa3padOTUUK IOJB30BATEIBCKHUX
uHTepdericoB, pa3pabOTUMK TOJHOTO IUKIA, HIPU(TOBON KOMILIEKT,
MOCBIJIATh 3aIpoC, M3BJIeKaTh, B3aUMO3aMEHSIEMO, PACKpPhIBATh MaIaroIiee
MEHIO, BBITIOJHATHCS HAa CE€pBepe, MojaraThCs Ha YTO-JI., KOJ KIUEHTCKON
CTOPOHBI.

1.2. Match the following synonyms from the text

1. tosave
2. complex
3. to execute
4. design

5. foundation
6. to provide
7. to designate
8. component
9. wvisual

10. configuration

a) of the sight or vision

b) outline

c) to prepare, to supply

d) complicated, composed of several
elements

¢) constituent

f) basis

g) to appoint, to assign

h) to keep, to preserve

1) project, scheme

) to accomplish

1.3. Match the following words and phrases from the text with their

meanings
1. Backend a) a collection of interlinked web pages on
the World Wide Web
2. domain b) all of the behind-the-scenes digital

operations that it takes to keep the front
end of a website running, such as the
coding, style, and plugins

3. Web designer

c) the address for a website as entered into
the browser

4. website d) the part of the website or app that the
user sees. If the back end of your website
is everything behind-the-scenes, this is
what happens onstage

5. frontend e) system software for creating and

managing databases that makes it possible
for end users to create, protect, read,
update and delete data in a database

6. database management
system

f) an IT professional who is responsible for
designing the layout, visual appearance
and the usability of a website

1.4. Read the text again and decide if the following statements are true
or false.

1) Web development is the process of building websites and
applications for a private network.

2) Web development can range from developing a simple single static
page of plain text to complex web applications, electronic businesses,
and social network services.

3) There are two kinds of Web developer specialization: front-end
developer and back-end developer.

4) The backend is not very actual because the user doesn’t actually see
it.

5) Web design is an extremely broad field.

6) Backend developers ensure that everything the frontend developer
builds is fully functional.

7) A full-stack developer builds the more advanced functionality of the
site, such as the checkout function on an e-commerce site.

8) Sometimes Websites do not rely on database technology.

1.5. Answer the following questions on the text

1) What does a full-stack developer do?

2) What is a backend developer responsible for?

3) What does a frontend developer do?

4) Can you name any types of web development?

5) What is the difference between web development and web design?
6) How many people can Web development team consist of?

7) What tasks does Web development include?

2. Focus on Grammar

2.1. Study the table of Participle I and Participle 11

Bun (Active) (Passive)
developing -paspabamuiearowuii; being developed -
Present Participle |pazpabamuisas (BooOie) While paspabamuleaemvlii; 0y0yyu
Simple developing his first website he can paspaboman (BooO11IR)
make some mistakes.
having | 111 having been | 111
Present Participle having developed - pazpabomas, having been developed —
Perfect (y>i<§, J10 4€r0-TO) (vorce) bvin paspaboman
Having developed the program our
company can offer its maintenance.
Participle II - | 111
(Past Participle)y | T

developed — pazpabomannuiii

2.2. Read and translate the sentences. Comment on the functions of
Participle I, 11

1) Software engineering is the discipline that aims to provide methods
and procedures for developing software systems.

2) Extensive simulation and prototyping are sometimes used to capture
and analyze the system requirements concerned with human
interaction.

3) Researchers in the Cockrell School of Engineering at The University
of Texas have developed a new, open-source computer programming
framework that could make the web significantly more energy
efficient, allowing people to save more battery power while browsing
on mobile devices.

4) Having heard the gift of the report, Mr Smith did not dispute it.

5) Turning off his computer, he went out to the terrace.

6) He entered, puzzled but interested.

7) At last she heard her name called.

8) Mobile device users spend nearly two-thirds of their time browsing
the web.

9) And each answer made was written down quickly upon the sheets of

paper.

2.3. Choose the right variant

1) Have you had this article ?
a) typed b) typing c) type
2) We shall not be able to catch the train at seven?
a) left b)leaving c¢) having been left
3) The letter yesterday was not welcome.
a) receiving b) having received c) received
4) his report, the clerk started writing down the latest figures.
a) finished b) being finished c¢) having finished

5)1 won’t be able to go anywhere tomorrow as I’ll have my new
furniture :
a) delivering b) being delivered c) delivered
6) articles for her course paper, she began money as a
journalist while she was attending college.
a) writing, earning; b) having written, earn; c) having written, to earn
7) She turned to me for help, how to deal with the problem.
a) not having known b) not being known c¢) not knowing
8) Alice didn't like her computer classes; she thought they were
a) bored b) being boring c) boring

3. Discussion

3.1. Look at some websites. Make notes on the differences in design
between them. Make a report about navigation bars, the categories and
animations they use. What design features can you notice?

3.2. Discuss the following questions:

1) Why do people have personal websites?

2) Have you ever visited anyone’s personal home page? What was it
like? Why do companies have websites?

3) What is a difference between a website and a webpage?

4. Additional reading

4.1. Read and translate the text about other development tools

Other web development tools

Web development tools (often called devtools or inspect element)
allow web developers to test and debug their code. They are different from
website builders and integrated development environments (IDEs) in that
they do not assist in the direct creation of a webpage, rather they are tools
used for testing the user interface of a website or web application.

Web development tools come as browser add-ons or built-in features
in web browsers. Most popular web browsers, such as Google Chrome,
Firefox, Internet Explorer, Safari, Microsoft Edge and Opera, have built-in
tools to help web developers, and many additional add-ons can be found in
their respective plugin download centers.

Web development tools allow developers to work with a variety of
web technologies, including HTML, CSS, the DOM, JavaScript, and other
components that are handled by the web browser. Due to increasing
demand from web browsers to do more, popular web browsers have
included more features geared for developers.

Web developers will also use a text editor, such as Atom, Sublime or
Visual Studio Code, to write their code; a web browser, such as Chrome or
Firefox; and an extremely crucial tool: Git!

Git 1s aversion control system where developers can store and
manage their code. As a web developer, it’s inevitable that you’ll make
constant changes to your code, so a tool like Git that enables you to track
these changes and reverse them if necessary is extremely valuable. Git also
makes it easier to work with other teams and to manage multiple projects
at once. Git has become such a staple in the world of web development
that it’s now considered really bad practice not to use it.

Another extremely popular tool 1s GitHub, a cloud interface for Git.
While we explain more about what it is and how to use it in our GitHub
guide, essentially this tool offers all the version control functionality of
Git, but also comes with its own features such as bug tracking, task
management and project wikis.

GitHub not only hosts repositories; it also provides developers with a
comprehensive toolset, making it easier to follow best practices for coding.

It is considered the place to be for open-source projects, and also provides
a platform for web developers to showcase their skills.

Wouldn’t it be great if you could edit your HTML and CSS in real-
time, or debug your JavaScript, all while viewing a thorough performance
analysis of your website?

Google’s built-in Chrome Developer Tools let you do just that.
Bundled and available in both Chrome and Safari, they allow developers
access into the internals of their web application. On top of this, a palette
of network tools can help optimize your loading flows, while a timeline
gives you a deeper understanding of what the browser is doing at any
given moment.

Google release an update every six weeks—so check out their website
as well as the Google Developers YouTube channel to keep your skills up-
to-date. (2500)

4.2. Write a short summary of the text for additional reading

4.3. Give a short explanation of the terms ‘Web development’ and ‘Web
development tools’

UNIT 10. Some Basic Elements of a Web Page

Learning objectives
= to review the essential elements of a web page
= to understand what impact each element has and how it contributes to
the general user experience
= to learn some computer terms used in web page development

Key words and phrases. Give Russian equivalents and remember the
meanings of the key words and phrases used in the text

Header, to scroll the page, website layout, trial version, call-to-action
button, to hide, hamburger menu, sticky header, two-layer navigation,
brand identity, to catch attention, hero section, to grab attention,
footer, slider, carousel, internal search, the search query, shortcut,
misinterpretation, lower bounce rate, slimmer, to get aware of, a
search box, logo of the company, to apply a technique, website
content.

Read the following text and do the exercises given after it

Header is the upper (top) part of the webpage. Being the area people
see before scrolling the page in their first seconds on the website, the
header is an element of strategic importance. It is expected from the header
to provide the core navigation around the website so that users could scan
it in split seconds and jump to the main pages that can help them. Headers
are also referred to as site menus and positioned as an element of primary
navigation in the website layout. Headers may include a bunch of
meaningful layout elements, for example:

— basic elements of brand identity, usually a logo

— call-to-action button

— links to basic categories of website content

— links to the social networks

— basic contact information (telephone number, e-mail address,
etc.)

— switcher of the languages in case of the multilingual interface

— search field

— subscription field or button

— links to interaction with the product such as trial version,
downloading from the AppStore, etc.

What makes a header a vital element contributing to web usability is
the fact that it is placed in the most scannable zone of a web page.
Whatever is the scanning pattern users stick to on a website, it starts from
the top part of the page, scanned from left to right for languages using the
same reading and writing pattern. Some of the popular design practices for
web headers include:

— hamburger menu: hiding the set of links to different pages or
sections behind the hamburger button called so as it consists of
horizontal lines looking like a typical bread-meat-bread
hamburger.

— sticky header: header that doesn’t hide away but sticks to the
top part of the page when users are scrolling the page
down. This way core navigation area is available at any point of
interaction, which can be helpful in terms of content-heavy
pages with long scrolling.

— two-layer navigation: a sort of double set of navigation sites in
the header to separate two different routes of navigation that are
both important for web usability.

One more widely-used pattern for website headers i1s making a logo
clickable and opening or refreshing the home page after it’s clicked. If you
are interested in how it works, visit https://blog.tubikstudio.com/anatomy-
of-web-page

A call-to-action (CTA) button is an element of a user interface aimed
at encouraging a user to take a certain action. This action presents a
conversion for a particular page or screen (for example, buy, contact,
subscribe, etc.). In other words, it turns a passive user into an active one.
This type of button differs from all the other buttons on the page or screen
due to its engaging nature: it has to catch attention and stimulate users to
do the required action.

Effective call-to-action buttons are easy to notice; designers
intentionally create them so that website visitors could see them in split
seconds and respond. That’s why they are usually bold buttons containing
microcopy with a particular call to action (e.g., “Learn more” or “Buy it

now”’), which explains the main action for this page and encourages a user
to do it.

Hero section is the above-the-fold (pre-scroll area of the web page
containing the element that presents the strong visual hook: a hero image,
slider, catchy piece of typography, video, or anything else attracting
visitors’ attention and transfers a needed message to them. The main idea
is that the visual hook in the hero section instantly grabs attention and
allows for setting the quick visual, emotional, and informative connection
with the users, engaging them to scroll or push the buttons to learn more.

Footer is the lower (bottom) part of the web page which usually
marks its end. Being another common zone of global website navigation,
the footer provides the additional field for useful links and data users may
be interested in finding. Footers can include:

— brand identity signs, usually the name and logo of the company
or product

— links to user support sections, for example, FAQ page, About
page, Privacy Policy, Terms and Conditions, Support Team,
etc.

— credits to website creators

— contact forms and information

— links to company or product accounts in social networks

— testimonials and badges

— certification signs

— subscription field or button.

ENCGLINH
NATIONAL
DALLET

Slider is an interactive element that applies a technique of a
slideshow or carousel to present different products, offers, etc. It is
especially popular as a part of e-commerce and business websites to
present a sort of gallery of products or services.

Internal search is a functionality that enables a visitor to browse the
content inside the website and shows it according to the search query.
Tuned correctly, it shows the relevant content, and this way provides the
shortcut to what the user needs. Thus, the internal search saves the user’s
time and effort, amplifies usability and desirability of the digital product,
helps retain users, and increases conversion rates. The interactive element
responsible for the internal search in the user interface is a search field,
also called a search box or search bar: it enables a user to type in the
search query and, this way find the pieces of content that are needed.

If your website is made of 50+ pages, it’s high time you considered
applying the internal search. Well-designed and easily found search field
enables the user to jump to the necessary point without browsing through
the numerous pages and menus. In case you have a single-page website, if
your app or website is concise and not heavily packed with content, the
internal search is not needed. One more example is also here
https://blog.tubikstudio.com/anatomy-of-web-page/

Breadcrumbs are navigation elements used to support users in a
journey around the website: they get aware of where they are on the
website and can get used to the website structure more easily. So,
breadcrumbs present the secondary level of navigation and increase
website usability in case it has lots of pages.

Some of the benefits of breadcrumbs are:

— 1ncreased findability

— fewer clicks needed

— effective use of screen space line with plain-looking text elements
that don’t need much space

— no misinterpretation

— lower bounce rate: breadcrumbs are a great support for first-time
visitors or people that have no everyday experience of dealing with
complex websites.

As well as with internal website search, breadcrumbs are helpful in
cases when the website has multiple pages and a complex hierarchy
consisting of multiple layers. Breadcrumbs are common — and expected by
users — in big e-commerce websites and platforms, media and news

websites, blogs, and magazines covering a wide range of topics, etc.

Nicole full oy
length trench
coal

Product
Details

[Abridged from https://blog.tubikstudio.com/anatomy-of-web-page/]

1. Text-based Assignments

1.1. Give English equivalents of the following words and word
combinations:

[Ilanka BeO caiiTa; MTHOBEHUE OKa; HAOOp 3JIEMEHTOB; «3aJMIMATh» Ha
caiiTe; 11a0JI0H; CKPBIBATh CCBHUIKU;, MEHIO «TaMOyprep» (UKoHKa u3z mpex
2OPU3OHMANILHBIX JUHUL, NPU HANCAMUU HA KOMOPYIO OMKPbIBAEMCSl
MeH10); CTPAHUIIBI C OOJIBIINM COACpPKaHUEM; YI00CTBO TTOJB30BaHUs BEO
CTpaHMIIaMH; OOHOBJICHME HayajJbHOW CTpaHMIIBI, TIPUBIIEKATEIbHAS
npupoaa; HaMEPEHHO; BBEPXY CTPAHUIIBI; MPUBJICKATh BHUMAHUE;
BU3YJIbHBIM KPIOYOK; ciaiiaep; mnoaBan (dyTtep); XiaeOHbIE KPOIIKHU
(HaBUTAllMOHHAA IEMOYKA); MOMCKOBAas CTPOKa; KOA(DPUIMEHT KOHBEPCUH;
MOKa3arellb «HEHY)XHBIX IPOCMOTPOBY»; JIMHUSA JKpaHa; BHYTPEHHUM
TIOUCK.

1.2. Match the following computer terms with their definitions

1. Web page a) usually the top area of a website, containing the
company logo, main navigation, phone number.
2. Layout b) anything on a website that asks the user to take an

action. Usually, this is something such as 'buy
now', 'call us today', 'order now', 'don't see what
you're looking for? Call us now on xxx', 'ready to
give it a try? Start a free trial now'.

3. Header c) a single document, generally written in
HTML/XHTML, meant to be viewed in a web
browser. In many cases, web pages also include
other coding and programming (such as PHP,
Ruby on Rails, or ASP).

4.Footer d) describes what is on a page and where, the page
structure.

5. Breadcrumbs e) usually, the bottom area of a webpage, consisting
of links to internal pages including legal
information etc, Copywrite info etc.

6. A Call-to- f) the small links under the Header that show the
Action containing sections of a given page, usually
displayed as 'home > category > subcategory >
current page'. These exist to help users navigate
and understand site structure.

1.3. Answer the following questions on the text

1) What does header include? What makes a header a vital element
contributing to web usability?

2) Is footer the lower part or the top part of the web page?

3) What is the role of slider?

4) Which principle? "The ease of use / how user friendly the website
is". Accessibility, Usability, Clarity or Content?

5) What is internal search enable a visitor to do?

6) Do breadcrumbs present the primary or the secondary level of
navigation?

7) Why does a call-to-action button differ from all the other buttons?

1.4. Read the text again and decide if the following statements are true or

false

1) A call-to-action button 1is an element of strategic importance.

2) Headers are also referred to as site menus and positioned as an
element of primary navigation in the website layout.

3) Some of the popular design practices for web headers include:
hamburger menu, sticky header and internal search.

4) Two-layer navigation is a sort of double set of navigation sites in the
header to separate two different routes of navigation.

5) A call-to-action (CTA) button turns a passive user into an active one.

6) The main idea is that the visual hook in the hero section instantly
grabs attention and allows for setting the quick visual, emotional, and
informative connection with the users.

7) Footers can include: call-to-action button, links to basic categories of
website content, links to the social networks, basic contact
information (telephone number, e-mail address, etc.).

8) The internal search amplifies usability and desirability of the digital
product, helps retain users, and increases conversion rates. But it
takes a lot of time.

9) Breadcrumbs are helpful in cases when the website has multiple

pages and a complex hierarchy consisting of multiple layers.

2. Focus on Grammar

2.1. Revise the following constructions with Participles

1. The Objective - with -
the - Participle |
Construction

(Complex Object with
the Participle)

ynoTpebJsgeTcss Toraa, Korjaa
TOBOPSIIIAM XOYET IMOIYEPK-
HYTb, 4YTO JEHCTBHE, BBIpa-
JKEHHOE MpuYacTheM, Ha
3aBEpIICHO W TMPOTEKAEeT B
MOMEHT PEYH.

I saw her working on
her project.

Cam 000pOT COCTOUT W3
CYIIECTBUTEIILHOTO B 00IIEM
najexe (peke MECTOMMEHUS
B UMEHHUTEIHLHOM IaJIeKE) U
npudacTus. OIJTOT 000OpOT
XapaKTepeH JJIsl TUChbMEHHON
peun .

2. The Subjective ymorpebisiercss ¢ riarona- | Jane was found working

Participial Construction | mu 4yBCTBEHHOTO u | on her project.

(Complex Subject) YMCTBEHHOTO BOCIIPUATHS B

CTpaJgaTeIbHOM 3aJore.
KoHcTpykiuss ~ xapakrepHa
JUI IACbMEHHOM peyYH.

3. The Nominative BbIpakaeT aeiicteue, He | The article having been
Absolute Participial | cBsizanHoe ¢ JneiicTBueM, | translated, the student
Construction o0o3HaueHHbIM riarosioM- | showed it to the teacher.

ckazyembiM npejioxenus. | [locie toro kak (korga)

cTaThsd OblIa TIEpeBe-
JIeHa, CTYJEHT IOKa3al
e MIPEIOIABATEIIO.
(0OCcTOSATENHCTBO
BPEMEHM)

2.2. Point out the complex object and complex subject with the participle
constructions. Translate the following sentences into Russian

1) I heard him moving about, and presently he was back a new printer.

2) Walking into the center of the great empty office, he stood still.

3) Lifting the telephone, she answered, ‘Yes?’

4) She liked to watch him doing things, printing, coding, and designing.

5) He was always late on principle, his principle being that punctuality
is the thief of time.

6) You seem wanting to get out of it.

7) Having been checked our papers, she didn’t feel fit to work.

8) I don’t like people coming too close.

9) The rule having been answered, we passed on analyzing the
sentences.

10) There was no money, Hilbert having used all the possessed.

11) Nobody having anything more to say, he went out.

12) The task was understood as being too difficult for the students.

13) Christian seemed enduring a profound spiritual crisis.

14) We watched the plane landing.

2.3. Make up your own sentences with Participle 1 as parenthesis
(independent element).

Participle 1 is the headword of the phrase, the meaning of which is a

comment on the whole sentence or some part of it.

Allowing for — nenasi monpaBKy Ha

Generally speaking — BooO111€ TOBOPS

Judging by/ from — cyas no

Joking aside — xpome IyTOK, ITyTKU B CTOPOHY

Leaning aside — He roBops 0

Putting it mildly — MsTKO BBIpa)KasiCh

Taking into consideration — mpuHUMasi BO BHUMaHUE

Talking/ speaking of — x Bompocy 0, TOBOPS O

E.g. Generally speaking it’s you duty to discuss all the necessary details
with our customer.

3.1.

3. Discussion

Watch this video and give your comments on the top 5 websites
https://www.youtube.com/watch?v=AmHEfTSBXiY&ab channel=FI

ux

3.2. Discuss the following questions

1) What is good Web design? What is important in Web design?
2) Is Web Design graphic design?

3) How do I start a website?

4) Is HTML and CSS enough to create a website?

5) What are the different types of website layouts?

3.3. Explain the following terms in English

Scrolling, trial version, multilingual interface, hero section, e-commerce,
breadcrumbs, conversion rates, search bar, logo.

3.4. Choose your answers to the questions and discuss them with your

partner. If you are not sure you can find the necessary information in
the Internet

Web pages and web apps test questions

1) What is a dynamic website?
A)A website that has interactive element
B) A website that has no form of interactivity
C) A website that is very large
2) What web development languages are most websites written in?
A)High level languages like C++ and Java
B)HTML and CSS with some scripting languages like JavaScript
and PHP
C)Pseudo code
3) What is a mashup (npunosicerue, xombunupyowee 6 cebe KoHmeHm
C PA3UUHBIX UCIOYHUKOB)?
A)Two or more websites that have been joined together
B) A website or application which mixes code from different external

sources

C) A website that isn't working properly
4) What are cookies?
A)Viruses that are downloaded onto your computer
B) Programs that are stored on your computer that tell a website if
you have been to that site before
C) Text files that are stored on your computer that tell a website if
you have been to that site before
5) What identifies the kind of device that is accessing the website?
A)The server
B) A protocol
C) The web browser
6) What is the difference between the client-side scripts and the Server-
Style Scripts?
A)Client-side scripts are programs that are processed by the web
browser and server-style scripts are processed by the web server
B) Client-side scripts are programs that are processed by the web
server and server-style scripts are processed by the web browser
C)Client-side scripts process the static parts of the web site and
server-style scripts process the dynamic parts of the web site
7) How do search engines rank the website result they receive?
A)Websites appear higher up a list of results purely based on how
many hits have occurred on that website altogether, since it was
created
B) Websites appear higher up a list of search results because they
have paid the web browser to be ranked higher
C) Websites appear higher up a list of results because they are judged
to be more important by the search algorithm. This is measured by
the popularity of a site and how many connections it has with
other websites
8) What is cloud computing?
A)Cloud computing is storing and using services online, rather than
storing them locally on a device such as a hard drive
B)Cloud computing is accessing your home computer over the
internet
C)Cloud computing is accessing stored data online using only
mobile devices

4. Additional reading
4.1. Read and translate the text about other elements of a Web Page

The menu is one of the core navigation elements in user interfaces.
It is a graphical control that presents the options of interactions with the
interface. Basically, it can be the list of commands — in this case, options
will be presented with verbs marking possible actions like, for example,
“save,” “delete,” “buy,” “send,” etc. A menu can also present the
categories along which the content is organized in the given interface, and
this can be the high time for using nouns marking them.

Menus can have different locations in the interface (side menus,
header menus, footer menus, etc.) and different ways of appearance and
interaction (drop-down menus, drop-up menus, sliding menus, etc.)

Some popular types found on diverse websites are:

Classic horizontal menu: the most common and well-recognized type
of menu which presents the core navigation organized as a horizontal line
in the website header, mentioned above

Sidebar menu. quite a classic type, presents a vertical list of options
sticking to the left or right side of the web page

Dropdown menu: a more complex type of menu for content-heavy
websites; here, the list of additional options opens below the primary one
when it’s clicked or hovered. Another similar option is the dropup menu,
when the list opens up, not down, but the essence is the same.

Megamenu. that’s the complex expandable menu in which the big list
of multiple choices is presented in a two-dimensional dropdown layout;
this approach is effective for cases with a vast number of options.

Hamburger menu: when the hamburger button (typically marked
with three horizontal lines) is clicked, the menu expands. This option saves
space and is often applied to mobile versions of websites. One more
example is also here https://blog.tubikstudio.com/anatomy-of-web-page/

Form is an interactive element that allows users to send information
to the system or server. In a nutshell, it is a digital version of any real
paper form we have to fill in to provide someone with the arranged
information; however, digital forms can have more options and
functionality to make this process even more smooth, clear, and user-
friendly. As it is a traditional and well-recognized pattern of collecting the
data, users deal with forms quite often in their digital lives, starting from

the process of registration, adding personal or financial details, making
payments, sending feedback, subscribing to a newsletter, etc.

03. == ®
; _.‘.1“

Become Vertt How it works
Driver Today

>

Vehicles

Vertt Benefits

Vertt Pramim. Lun
== B B
—~0—

As forms present the actual point of communication between the user
and the digital product, they have to be super simple and easy to use. And
the simpler the Ul element should be, the more designers’ thoughts and
effort should be put into it, right? Make the logic of data input thought-out,
the navigation of the form intuitive, and the number of required actions
minimized.

Cards, also called tiles, are layout elements that help arrange and
visualize homogeneous data or content in a scannable and easy-to-use
way. Cards are usually organized in a sort of grid, but each card looks like
a separate piece in this system. Cards can combine different types of
content about a particular item. For example, a product preview card on a
catalog page can include an image, a title, basic functionality of adding it
to a shopping cart or saving to the wishlist, etc.

SC]GleiOﬁé from the
art institute Losing all
sense of time

Selections
from the
art institute

LLosing all
sense of
time

Art Institute blog uses ultra-minimalistic cards, separated only by
negative space but organized clearly to be distinguished.

Video is not a really basic part of a web page, but with the progress
of web development solutions and technical abilities, we can find it more
and more often on the website of different kinds these days. A catchy
video crafted with an understanding of the target audience is a tool
attracting customers’ attention as well as a well-checked method of
informing them quickly and brightly. Video content activates several
channels of perception — audio, visual, motion — simultaneously, and
usually does that wrapped in telling a story. Such a combination of factors
often makes a video presentation strong, emotional, and memorable.

We can come across many other types of videos that help users
quickly catch the idea of a product, set the atmosphere, send the needed
message, engage in trying the service, demonstrate how the tool, app, or
software works, share feedback from users, and so on, and so forth.
However, there are essential points to consider, such as loading time,
contrast issue, responsiveness, and other pitfalls that can spoil user
experience in the case of video integration into a web page.

Favicon, also known as URL icon or bookmark icon, is a special
type of symbol representing the product or brand in the URL-line of the
browser and in the bookmark tab. It allows users to get a quick visual
connection with it while they are browsing. This interface element proved
itself effective for productive website promotion and good recognizability
of its visual identity. Being super small, it makes a great contribution to
web usability.

Tags

That’s another element of secondary navigation level, often found in
blogs and websites with plenty of homogenous content. Tag is presented
with a keyword or phrase that enables users to jump directly to the items

marked up with it. Tags are actually pieces of metadata that provide quick
access to specific content categories, so they support navigation with the
additional way of content classification. Moreover, tags are often the
elements that users create by themselves, so they become an alternative to
the names of categories that are fixed by the website and can’t be changed
by users. [https://blog.tubikstudio.com/anatomy-of-web-page/]

4.2. Work with a partner. Ask some questions to each other on the text
about some other elements of a web Page

4.3. Translate the following sentences into English

1) User interface (UI) sneMeHTBI — 3TO YacTH, KOTOpBIE AU3aiHEPHI
UCIIONB3YIOT JIJIsl CO3/IaHuUs MPUJIOKESHHUI MIN BeO-CalTOB.

2) OHM 100aBISAIOT UHTEPAKTUBHOCTH B MOJIb30BATEILCKUN MHTEp(DEiic,
OPEJOCTABIISIL MOJb30BATEN0 TOYKM CONPUKOCHOBEHHS IIPU
HaBUTAllMU 110 HUM.

3) XneOHble KpolllKu (HaBUTallMOHHAS Ienovka, auri. Breadcrumbs) —
ATO AJIEMEHT HABUTAIlMU MO CalTy, KOTOPHIA MPEICTABISET COOOI
IyTh OT KOpHS CauTa, [0 TEKYIIEH CTPaHUIbl, HA KOTOPOU
B HACTOSIIIIUMA MOMEHT HAaXOJUTCS MOJb30BATEb.

4) XnebHbIe KPOILIKK OOBIYHO MPEACTABISAIOT COOOM MOJ0CY B BepXHEH
YaCTU CTPAHUIIBI, OOBIYHO O/ IIIAITKOM caiTa.

5) Hotudukamuu namT 103epy MOHSTh, YTO €CTh 4YTO-TO HOBOE,
HaIMpuMep, COOOIIEHUE UITH KaK0e-TO CUCTEMHOE YBEIOMJIICHHE.

6) Cnenyromieit 00s3aTeIbHON COCTABISAIONICH YacTbi0 Web-CTpaHHIlbI
ABJISIFOTCS JJEMEHThl HABUTallMM — TUIEPCCHUIKH, CBA3BIBAIOIINE
JAHHBIN JOKYMEHT C IPYTUMU pPa3feiaMH CauTa.

7) D1eMEeHTbl HaBUTAllMU MOTYT OBITh BBIMOJHEHBI B BUJIE TEKCTOBBIX
CTPOK, TpadUueCKUX OOBEKTOB, TO €CTh KHOIIOK, JIMOO aKTHBHBIX
KOMIIOHEHTOB.

8) Ecniu web-cTpanuna sBjisieTcsi CTaApTOBBIM JIOKYMEHTOM, B HIDKHEH
€€ YacTH TaKXKe pa3MEIIal0oT CYETUYHMK IOCEIICHUM — HeOOJbIION
CLIEHApHi, BBI3BIBAIOIINI yCTAHOBIEHHBIN Ha cepBepe CGI-ckpunr,
KOTOPBIN (PUKCHUPYET KaXKJ0€ OTKpBhITUE IOKyMEHTa B Opaysepe
MOJIb30BaTENIEH, U3MEHSISI 3HAUEHUE NHAMKATOPA CUCTUHKA.

9) bnarogaps aToMy web-mactep 06e3 Tpyaa ONpeacTUT KOJWYECTBO
MOCETUTEJICH, HABECTUBIIIUX €r0 CTPAHUUYKY B T€YEHHUE KaKOTO-THU0O0
BPEMEHHU.

UNIT 11. Application Development and Types of Application

Development Methodologies

Learning objectives

to acquire basic knowledge about application development

to consider three categories most application development
methodologies can be grouped into

to consider advantages and disadvantages of three methods in
application development

Key words and phrases. Give Russian equivalents and remember the
meanings of the key words and phrases used in the text

Application development, freelance developer, software development
life-cycle (SDLC), to emerge; waterfall, to line out, sequence,
prototype, to divert, to accommodate, meticulous, to train junior
programmers, Rapid Application development (RAD), sprint, Agile
project management, highly skilled, deadline; iterative, to stick to,
planned schedule, to suit the needs, to attach.

Read the following text and do the exercises given after it

Application development is the process of designing, building, and

implementing software applications. It can be done by massive
organizations with large teams working on projects, or by a single
freelance developer. Application development defines the process of how
the application is made, and generally follows a standard methodology.

You must consider the size of the project, how specific the
requirements are, how much the customer will want to change things, how
large the development team is, how experienced the development team is,
and the deadline for the project.

Application developmentis closely linked with the software
development life-cycle (SDLC).

The basic stages of SDLC are: Planning, Analysis, Design,
Construction, Testing, Implementation, Support.

The way that application development teams have accomplished
these seven tasks has changed a lot in the last few decades, and numerous
types of application development methods have emerged. Each
methodology must provide a solution for the seven stages of the SDLC.

Most application development methodologies can be grouped into
one of three categories: Waterfall, RAD, Agile.

Waterfall

The key words for the waterfall method of application development
are planning and sequence. The entire project is mapped out in the
planning and analysis stages. The customer comes with a very explicit list
of features and functionalities for the application. Then, a project manager
takes the whole process and maps it out amongst the team.

This application development method is called waterfall because
once you go down, you can’t go back up; everything flows downward. The
development team works together over a set of time, building exactly what
is lined out according to the specifications. After the architecture is
designed, then only can the construction begin. The entire application is
built, and then it is all tested to make sure that it is working properly.
Then, it is shown to the customer and ready to be implemented.

The waterfall method assumes that the project requirements are clear
and the customer and project manager have a unified and clear vision
about the end result.

The advantage of the waterfall method is that it 1s very meticulous.
It’s also a good application development method to use for big projects
that need to have one unifying vision. The waterfall method is also a good
way to train junior programmers on parts of development without having
to turn an entire project to them.

The disadvantages are that changes happen all the time. Even if the
development team is able to build exactly what the customer originally
wanted (which doesn’t always happen), the market, technology, or the

organization may have changed so much that it is effectively useless and a
waste of time.

Rapid Application Development (RAD) Methodology

In many ways, RAD was the opposite of the waterfall method.

RAD is based mostly on prototypes, meaning that the goal is to
produce a working version of the application as quickly as possible, and
then to continuously iterate after that. The application development team
and the customer work very closely with each other throughout the
process. RAD teams are usually small and only involve experienced
developers who are skilled in many disciplines. If a project needs to divert
from the original plan, RAD should be able to accommodate that easily.

Rapid Application Development (RAD)

Prototype

I User Design Construction Cutover

Refine Test

Fig. 11. Rapid Application Development

In the RAD model, as each iteration is completed, the product gets
more and more refined. The early prototypes are often very rough, but give
a picture of what can be. Each iteration then looks more like the finished
product.

RAD’s advantages are a quick and highly flexible team and a very
close relationship with the customer. If changes are expected, RAD will be
able to accommodate these much faster than waterfall. RAD is also never
too attached to a prototype and is always willing to change it to suit the
needs of the customer.

However, RAD isn’t a perfect application development method.
RAD requires highly skilled (and highly paid) programmers to work on a
project that may change in complexity by the day. There’s also less
adherence to deadlines and more of a focus on adding features, which can
extend delivery dates. RAD requires a lot of input from customers who
may not always be available or know what they need. Additionally, for

some applications, having a prototype is not useful without seeing the
entire product.

Agile Methodology

Agile application development is very similar to RAD, but also
includes some changes to make it more suitable to larger projects. Agile is
iterative, like RAD, but focuses on building features one at a time. Each
feature is built in a methodical way in the team, but the customer is
involved to see the features and sign off on them before the next feature is
developed.

Agile uses sprints, or set of time when a certain feature should be
built, tested, and presented. It tries to incorporate the entire SDLC for a
feature into each sprint. This, ideally, helps to stick to a planned schedule,
but also allow for frequent reviews.

Agile doesn’t focus on prototypes, but only presents completed work
after the sprint is over. So while the customer is informed more often than
waterfall, the customer only ever sees finished work, unlike RAD.

Agile project management methodology is also more team or squad
based. With RAD, you are working directly with a programmer. With
Agile, the application development team will also include testers, UX

designers, technical writers, and many others.
[Abridged from https://kissflow.com/low-code/rad/types-of-application-
development-methodologies]

1. Text-based Assignments

1.1. Give English equivalents of the following words and word
combinations:

Buenpenue mnporpaMMHBIX TPUIIOKEHHUM; BHEIITAaTHBIM pa3pabOTUHK;
TpeOOBaHUS; CTaHAAPTHAS METOO0JIOTHS; BBIIIOJIHUTD 3aJlauy; OTHOCUTh B
OJIHy U3 KATEropuil; HamedaThCsl; MOJAPOOHBIM TMepeueHb; (QYHKIUU
PWIOKEHUSI; MEHEIIKEP MPOEKTa; B COOTBETCTBUM CO CHEIU(DUKALUSIMU;
OMpECIICHHBINA TEepUOJI BPEMEHM; ITycTas TpaTa BpEMEHHU;, ObICTpas
pa3paboTka MPUIIOKEHUH; pabouas BepcHsl; 3aKa3uWK; OTKIOHHUTHCS;
NPUBA3BIBATECS K MPOTOTHIY; B COOTBETCTBUU C IMOTPEOHOCTSIMU;
OpPUEHTHPOBAaHA Ha TPYNNy; 3alUIaHUPOBAHHBIN TpaduK; METOA THUOKOMH
Pa3pabOTKH MPUITOKEHUM.

1.2. Match the following computer terms with their definitions

1.RAD

a) a linear, sequential approach to the software
development life cycle (SDLC) that is popular
in software engineering and product development

2.software testing

b) a repeatable fixed time-box during which a
"Done" product of the highest possible value is
created

3. sprint

c) a form of Agile software development
methodology that prioritizes rapid prototype
releases and iterations.

4.implement

d) a method to check whether the actual software
product matches expected requirements and to
ensure that software product is Defect free. It
involves execution of software/system components
using manual or automated tools to evaluate one or
more properties of interest

5.prototype

f) to recognize and use an element of code or a
programming resource that is written into the
program

6. waterfall
method

g) an original model, form or an instance that
serves as a basis for other processes. In software
technology, this term is a working example
through which a new model or a new version of an
existing product can be derived

1.3. Match the following synonyms from the text

. complexity

. entire

. to suit

. to incorporate
. properly

. management
. agile

. to assume

. meticulous

O 0 1O\ L & WD —

a) detail, very careful

b) fitly, suitably

c) smart, active, quick

d) to correspond, to match

e) full, complete

f) to unite, combine, mix, consolidate

g) administration, guidance

h) complication, entanglement, involved
character

1) to suppose

1.4. Answer the following questions on the text

1) What factors are there those go into how application development
is done?

2) How many stages does software development life-cycle include?

3) Why is one of the application development methods called
waterfall?

4) Is RAD based mostly on prototypes, isn’t it? Is it a perfect
application development method?

5) What does Agile application development use? Does it focus on
prototypes?

6) What is the goal of Rapid Application Development?

1.5. Complete the following table using the information about advantages
and disadvantages of different methods in application development.
You can use some additional information from the Internet if

necessary
Advantages Disadvantages
Waterfall 1. Meticulous, good for 1. Changes happen all the
big projects. time.
2. ... 2....
RAD methodology
Agile methodology

2. Focus on Grammar

2.1. Study the following table and make up your own sentences with
Gerunds used in different functions

Functions of Example Translation
the Gerund
Subject Having a prototype is not useful | Umets npototun 6ecriosie3Ho,
without seeing the entire €CJIA HE BUIETh BECH
product. MPOJTYKT.
Compound The negotiations are still far [IeperoBopsl erie OTHIOb HE
Predicate from being ended. 3aKOHYCHBI.
We began_discussing the needs | Mb1 Hauanu o6cyxaath
of our customers . NOTPEOHOCTH HAIIUX
3aKa3YMKOB.

Object I remember having turned off my | 5l moMH:0, YTO BBIKITIOUMIT
computer. KOMIBIOTEP.

Attribute The proposal for reducing the [IpennoxxeHue o COKpaleHun
working hours is now being pabouei Heenu ceivac
discussed. o0cy)Kaaercs.

Adverbial We cannot use the device MpbI HE MOXKEM UCTIOJIB30BAThH

Modifier without testing it. ATOT TIpubOp 6€3 ero

IPOBEPKH.

2.2. Read and translate the sentences. Comment on the functions of the
Gerunds

1) It's no use talking to the headmaster.

2) Finding a parking space is really difficult in this part of the city.

3) She has always dreamt of becoming a good programmer.

4) You can’t learn without making mistakes.

5) Solving such a problem is not an easy task.

6) I suggest telephoning the hospitals before asking the police to look
for him.

7) She took a long time to get over losing her dog.

8) Tom is proud of donating his free time to the charity.

9) Agile is iterative, like RAD, but focuses on building features one at a
time.

2.3. Choose the right variant

1) You must keep on the computer until you understand how
all of the programs.

a) practice, to use; b) practicing, using; c) practicing, to use

2) Will you excuse me for an obvious precaution?

a) taking b) take c) to take

3) I’'ll never forget my first entrance examination. It was a
complete failure.
a) to take b) having been taken c¢) taking

4) If people delay their bills, they only incur more and more
interest charges.
a) to pay b) paying c) to be paying

5) We both sat in silence for some little time after to this

extraordinary story.
a) listening b) listen ¢) having been listen

6) I look forward to you the next time I’m in town. I’ll be

sure to let you ahead of time so that we can plan to get
together.
a) see, to know; b) see, knowing; c) seeing, know
7) His a bad mark did not surprise anybody.
a) receiving b) being received c¢) having received
8) He finished this file form the Internet.

a) downloading b) being downloaded c¢) having downloaded
3. Discussion
3.1. Discuss the following questions concerning Application development

1) Why is software testing important?

2) How will your application make money?

3) Web apps are relatively easy to maintain. Can you explain why it
is so?

4) Users interact with different web browsers, and as a result, the
usage patterns and performance metrics used to create a product
roadmap are more challenging to collect. Is it advantage or
disadvantage for Web Apps?

5) What should you look for in a development team?

6) How much does it cost to develop an App?

3.2. Prepare a one minute speech on the following topic and present it to
the class

‘The best ideas are of little use if they cannot be implemented. Good
application design alone is not enough; efficient, high-quality
development is also required’

3.3. Prepare a short report about one of the methods of application
development

4. Additional Reading

4.1. Read and translate the following text about World Wide Web display
languages

HTML

The World Wide Web is a system for displaying text, graphics, and
audio retrieved over the Internet on a computer monitor. Each retrieval
unit 1s known as a Web page, and such pages frequently contain
“links” that allow related pages to be retrieved.
HTML (hypertext markup /anguage) is the markup language for encoding
Web pages. It was designed by Tim Berners-Lee at the CERN nuclear
physics laboratory in Switzerland during the 1980s and is defined by an
SGML DTD. HTML markup tags specify document elements such as
headings, paragraphs, and tables. They mark up a document for display by
a computer program known as a Web browser. The browser interprets the
tags, displaying the headings, paragraphs, and tables in a layout that is
adapted to the screen size and fonts available to it.

HTML documents also contain anchors, which are tags that specify
links to other Web pages. An anchor has the form <A HREF=
“http://www.britannica.com”> Encyclopadia Britannica, where the
quoted string is the URL (uniform resource locator) to which the link
points (the Web “address™) and the text following it is what appears in a
Web browser, underlined to show that it is a link to another page. What is
displayed as a single page may also be formed from multiple URLs, some
containing text and others graphics.

XML

HTML does not allow one to define new text elements; that is, it is
not extensible. XML (extensible markup language) is a simplified form of
SGML intended for documents that are published on the Web. Like
SGML, XML uses DTDs to define document types and the meanings of
tags used in them. XML adopts conventions that make it easy to parse,
such as that document entities are marked by both a beginning and an
ending tag, such as <BEGIN>...</BEGIN>. XML provides more kinds of
hypertext links than HTML, such as bidirectional links and links relative to
a document subsection.

Web scripting

Web pages marked up with HTML or XML are largely static
documents. Web scripting can add information to a page as a reader uses it
or let the reader enter information that may, for example, be passed on to
the order department of an online business. CGI (common gateway
interface) provides one mechanism; it transmits requests and responses
between the reader’s Web browser and the Web server that provides the
page. The CGI component on the server contains small programs
called scripts that take information from the browser system or provide it
for display. A simple script might ask the reader’s name, determine the
Internet address of the system that the reader uses, and print a greeting.
Scripts may be written in any programming language, but, because they
are generally simple text-processing routines, scripting languages like
PERL are particularly appropriate.

Another approach is to use a language designed for Web scripts to be
executed by the browser. JavaScript is one such language, designed by
the Netscape Communications Corp., which may be used with both
Netscape’s and Microsoft’s browsers. JavaScript is a simple language,
quite different from Java. A JavaScript program may be embedded in a
Web page with the HTML tag <script language="JavaScript”>. JavaScript
instructions following that tag will be executed by the browser when the
page 1is selected. In order to speed up display of dynamic (interactive)
pages, JavaScript is often combined with XML or some other language for
exchanging information between the server and the client’s browser. In
particular, the XMLHttpRequest command enables asynchronous data
requests from the server without requiring the server to resend the entire
Web page. This approach, or “philosophy,” of programming is called Ajax
(asynchronous JavaScript and XML).

VB Scriptis a subset of Visual Basic. Originally developed for
Microsoft’s Office suite of programs, it was later used for Web scripting as
well. Its capabilities are similar to those of JavaScript, and it may be
embedded in HTML in the same fashion.

Behind the use of such scripting languages for Web programming
lies the idea of component programming, in which programs are
constructed by combining independent previously written components
without any further language processing. JavaScript and VB Script
programs were designed as components that may be attached to Web

browsers to control how they display information.
[https://www.britannica.com/technology/computer-programming-language]

4.2. Ask five questions on the content of the text for additional reading

4.3. Translate the following sentences

Y

2)

3)

4)

S)

6)

7)

[TokymnKy B IPWIIOKEHUH, OTUIaTa MOAMMUCKH WIIH MPEMHYM-BEPCHH,
pa3MelIeHUue PEeKJIaMbl, Mpoja)xa JaHHBIX — BCE ATHU CIOCOOBI
MOHETH3allMd MOXXHO MCIOJIb30BaTh, JaXe €CIU BBI
pacnpocTpaHsieTe NPUI0KeHHEe He OECIUIaTHO.

BHyTpeHHsIs1 apXuTeKTypa 3aBUCUT OT (YHKIIMOHAJTIA MOOWJIBHOTO
NPUIOKEHUS W BBIOpAaHHOTO crmoco0a 00pabOTKM W XpaHCHUS
JTAHHBIX.

OOBIYHO MBI COCTAaBJISIEM JIBA CIIUCKA — XapaKTEPUCTUK, KOTOPHIMU
JIOJDKHO oOJajgaTh TMPWIOKEHHE, U KIIOYEBBIX BU3YaJbHBIX
aneMeHTOB. OHU CTaHOBATCS (YHIAaMEHTOM JUIsi BCEX OyAyIIMX
aApXUTEKTYPHBIX paboT.

B konlle KaxAoro copuHTa OOCyXAalWTe ero pe3yJbTaThl C
3aMHTEPECOBAaHHBIMU CTOPOHAMH.

Pa3paboTka MOOWJIBHOTO TPHUJIOKEHHS HE 3aKaHUMUBAETCA C €ro
nyonukamued B cropax. Jlaxke 3a yMepeHHO TMOMYyJISPHBIMH
MPWIOKEHUSIMU CTOUT I1eJ1asi UCTOPUsI OOHOBJICHUH.

B nonsitue pa3paboTku MOOMIBHBIX MPUIIOKEHUHN 711 cMapT(OHOB,
IUTAHIIIETOB W MPOYUX MOOWIBHBIX YCTPOMCTB BXOJUT HAIMCAHUE
IPOrPpaMMHOTO KOJIa C IEJIbI0 CO3aHus MPOorpamMM, KOTOphie OyayT
paboTaTh Ha ONpeeICHHBIX MOOUIIBHBIX TUIAT(POpMaXx.

Ha cerogusamumii A€Hb CyIIECTBYeT 2 OCHOBHBIC ILIAT(HOPMBI
MOOMJIBHBIX OlepalnMoHHbIX cucteM — Android m 10S, u MeHee
nonyssapubie Windows Phone u Symbian).

UNIT 12. Game Engine

Learning objectives:
= to acquire basic knowledge about game engines and their types
= to consider what game engines provide

Key words and phrases. Give Russian equivalents and remember the
meanings of the key words and phrases

Game engine, software framework, to construct games, implementer,
a suite of tools, a rendering engine, “middleware”, platform
abstraction, a component-based architecture, to comprise, “graphics
engine”, to become outdated, a game application, multiple platform,
artificial intelligence, to simplify, to run on, a custom engine, scene
graph, training simulation

Read the following text and do the exercises given after it

A game engine 1is
a software framework primarily
designed for the development
==ES of video games, and generally
includes relevant libraries and
2 support programs. The "engine"
{& terminology is similar to the term

{ 'software engine" used in
the software industry.

Game engine can also refer to the development software utilizing this
framework, typically offering a suite of tools and features for developing
games.

Developers can use game engines to construct games for video game
consoles and other types of computers. The core functionality typically
provided by a game engine may include a rendering engine ("renderer")
for 2D or 3D graphics, a physics engine or collision detection (and
collision response), sound, scripting, animation, artificial intelligence,

networking, streaming, memory management, threading, localization
support, scene graph, and video support for cinematics.

Game engine implementers often economize on the process of game
development by reusing/adapting, in large part, the same game engine to
produce different games or to aid in porting games to multiple platforms.

In many cases, game engines provide a suite of visual development
tools in addition to reusable software components. These tools are
generally provided in an integrated development environment to enable
simplified, rapid development of games in a data-driven manner. Game-
engine developers often attempt to preempt implementer needs by
developing robust software suites which include many elements a game
developer may need to build a game. Most game-engine suites provide
facilities that ease development, such as graphics, sound, physics
and artificial-intelligence (AI) functions. These game engines are
sometimes called "middleware" because, as with the business sense of the
term, they provide a flexible and reusable software platform which
provides all the core functionality needed, right out of the box, to develop
a game application while reducing costs, complexities, and time-to-market
— all critical factors in the highly competitive video-game industry.

[i

Fig. 12. The screen of Quake

Like other types of middleware, game engines usually
provide platform abstraction, allowing the same game to run on
various platforms (including game consoles and personal computers) with
few, if any, changes made to the game source-code. Often, programmers
design game engines with a component-based architecture that allows
specific systems in the engine to be replaced or extended with more

specialized (and often more expensive) game-middleware components.
Some game engines comprise a series of loosely connected game
middleware components that can be selectively combined to create a
custom engine, instead of the more common approach of extending or
customizing a flexible integrated product. However
achieved, extensibility remains a high priority for game engines due to the
wide variety of uses for which they are applied. Despite the specificity of
the name "game engine", end-users often re-purpose game engines for
other kinds of interactive applications with real-time
graphical requirements - such as marketing demos, architectural
visualizations, training simulations, and modeling environments.

Some game engines only provide real-time 3D rendering capabilities
instead of the wide range of functionality needed by games. These engines
rely upon the game developer to implement the rest of this functionality or
to assemble it from other game-middleware components. These types of
engines are generally referred to as a '"graphics engine", "rendering
engine", or "3D engine" instead of the more encompassing term "game
engine". This terminology is inconsistently used, as many full-featured 3D
game engines are referred to simply as "3D engines". Examples of
graphics engines include: Crystal Space, Genesis3D, Irrlicht, OGRE,
RealmForge, Truevision3D, and Vision Engine.

Modern game- or graphics-engines generally provide a scene graph -
an object-oriented representation of the 3D game-world which often
simplifies game design and can be used for more efficient rendering of
vast virtual worlds.

As technology ages, the components of an engine may become
outdated or insufficient for the requirements of a given project. Since the
complexity of programming an entirely new engine may result in
unwanted delays (or necessitate that a project restart from the beginning),
an engine-development team may elect to update their existing engine with

newer functionality or components.
[https://en.wikipedia.org/wiki/Game engine]

1. Text-based Assignments

1.1. Give English equivalents of the following words and word
combinations:

CooTBercTByIOIIME OMOJMOTEKH; UIPOBas KOHCOJb; MEXaHU3M
BU3yaIM3alluy;, TrpadUuecKuil JBMKOK, MHOTOIOTOYHOCTD, IOJACPIKKA
JOKaW3alliy; CICHHATUCT TI0 BHEAPCHHUIO, pPa3pabOTUMK; CIIOCO0
yOpaBjieHUsl JaHHBIMU; YNpexkaaTh; HajaexHoe [10; mexmnnatdhopmeHHoe
IT1O; cpok BbIBOJA HA PBIHOK; UT'POBOM HMCXOJHBIM KOJ; HECTAHIAPTHBIN
JBIKOK; BKJIIOYATh psiJi KOMIIOHEHTOB; KaXIbli pa3 Mo pasHOMY,
HEMOCTOSIHHO; ~ TPEHUPOBOYHOE MOJICIMPOBAHUE;, HEXKEJATEIbHbIC
3QJICP)KKM; THOKWU WHTETPUPOBAHHBIM TMPOIYKT; OBITh 3aMEHEHHBIM;
oomee a3 dhexkTUBHAS Iepeaaya.

1.2. What do the following prefixes and suffixes mean? Translate these
words from the text and determine their part of speech

Functionality, insufficient, interactive, unwanted, reusable, implementer,
complexity, selectively, restart, discontinued, currently, informative,

indefinitely.

1.3. Match the following economic terms with their definitions

1. A graphics engine a) a core component of a complex software
system.

2. Competitive b) the art of creating three-dimensional images
or animations showing the attributes of a
proposed architectural design.

3. A scene graph c) a physics model typically implemented in
software for use in computer games
4. Visualization d) strongly desiring to be more successful than

others; as good as or better than others of a
comparable nature

5. A game engine e) any technique for creating images, diagrams,
or animations to communicate a message
6. Architectural f) a general data structure commonly used by

rendering, vector based graphics editing applications and

architectural modern computer games
llustration, or
visualization

1.4. Read the text again and decide if the following statements are true or
false

1) The "engine" terminology is not entirely similar to the term
"software engine" used in the software industry.

2) Developers can use game engines to construct games for video game
consoles and other types of computers.

3) The core functionality typically provided by a game engine may
include “3D engine” for 2D or 3D graphics.

4) In many cases, game engines provide a suite of visual development
tools in addition to reusable software components.

5) Complexity of programming is the only requirement in today’s
demanding market of video-game industry.

6) Modern game- or graphics-engines generally provide a scene graph -
an object-oriented representation of the 3D game-world.

7) End-users often re-purpose game engines for other kinds of
interactive applications with real-time graphical requirements.

8) Game engine implementers never economize on the process of game
development because they want to produce different games.

1.5. Answer the following questions on the text

1) What is a game engine?

2) What does a game engine include?

3) What types of engines are referred to as “graphics” engines? Can
you give any examples of them?

4) What do game engines provide?

5) Is it necessary to know how to add realism to a character, how to
add graphics effects or how to animate a sprite? Or is this all taken
care by the game engine?

6) If you're only aiming for a small 2D project, you probably don't
need a chunky engine that's going to come with a lot of features
you don't need. Do you agree with this statement?

7) What can you say about development of engines as technology
ages?
2. Focus on Grammar

2.1. State whether the —ing forms given in the following sentences are
Participles or Gerunds. In the case of Participles define the noun or
pronoun they qualify. Translate the sentences into Russian

1) Supporting multiple programs and users is the function of mainframe
operating systems.

2) Designing webpages you needn’t learn how to program in HTML.

3) There exists special-purpose memory where writing is seldom
necessary.

4) Programming involves analyzing the problem to be solved.

5) The data being transmitted is of great importance.

6) The aim of our seminar is studying basic stages of programming.

7) Howard Aiken completed a fully automatic calculator using standard
machine components.

8) While solving the arithmetical problem the computer failed.

9) Using the appropriate CAD software the designer can perform
various analyses on the object.

10) The Web 1s an Internet service making web pages available to
millions of users.

2.2. Study the following table Conditionals

if condition result
1 type Present Simple will + base verb
If | Tara is free tomorrow, he will invite her.
If | they do not pass their exam, their teacher will be sad.

There is a real possibility that
the condition will happen.

2 type Past Simple would + base verb
If | it snowed next July, would you be surprised?
If |Iwon the lottery, I would buy a car.

There is an unreal possibility
that the condition will
happen.

3 type Past Perfect would have + past participle

If | Tara had been free yesterday, I would have invited her.
If | it had rained yesterday, what would you have done?

Both the condition and result
are impossible now.

2.3. Open the brackets to form Conditionals

1) If we (not / work) harder, we (not pass) the
exam. (1)
2) If the students (not be) late for the exam, they
(pass). (3)
3) If she (have) her laptop with her, she (email) me.
(2)
4) If she (not go) to the meeting, I (not go) either. (1)
5) If the teacher (give) us lots of homework this
weekend, I (not be) happy. (3)
6) If I (want) a new car, [(buy) one. (2)
We (not have) so many arguments if you
(not be) so stubborn! (2)
71 (not meet) Amanda, if [(not go) to the party. (3)
8) If you (arrive) early, it (be) less stressful. (3)
9) If we (not be) so tired, we (go) out. (2)
10) If you (buy) the present, I (wrap) it up. (1)
11) If Lucy (not quit) her job soon, she (go)
crazy. (1)

2.4. Rewriting Conditionals. How can you express these ideas using
conditional constructions?

Model: 1 don't know whether I'm going to Australia. Let's suppose I go.

What can I do there?

— If I went to Australia, I could see the Sydney Harbour Bridge.

1) You went to the lecture. I'm sure you saw him. You can't have
avoided seeing him.
2) How can I get experience in speaking English?

3) I hope I won't fail my end of semester exams. How can I make sure I
pass?

4) Every time we finished an online quiz, we celebrated by having a
coffee.

5) I always feel much happier when the sun is shining.

6) I wish the library was open right now. I want to borrow a book.

3. Discussion

3.1. Explain the concept of game engine in your own words

3.2. Choose one of the game engines mentioned and prepare a report on
the topic “What are the advantages and disadvantages of this game
engine’”’

Unity, Unreal Engine, GameMaker, CryEngine, MonoGame, Construct

4. Additional Reading

4.1. Read and translate the following text. You can use a dictionary if
necessary
Artificial Intelligence

Artificial intelligence 1s the simulation of human intelligence
processes by machines, especially computer systems. Specific applications
of Al include expert systems, natural language processing, speech
recognition and machine vision.

As the hype around Al has accelerated, vendors have been
scrambling to promote how their products and services use Al. Often what
they refer to as Al is simply one component of AI, such as machine
learning. Al requires a foundation of specialized hardware and software
for writing and training machine learning algorithms. No one
programming language i1s synonymous with Al, but a few, including
Python, R and Java, are popular.

In general, Al systems work by ingesting large amounts of labeled
training data, analyzing the data for correlations and patterns, and using
these patterns to make predictions about future states. In this way, a
chatbot that is fed examples of text chats can learn to produce lifelike

exchanges with people, or an image recognition tool can learn to identify
and describe objects in images by reviewing millions of examples.

Al programming focuses on three cognitive skills: learning,
reasoning and self-correction.

Learning processes. This aspect of Al programming focuses on
acquiring data and creating rules for how to turn the data into actionable
information. The rules, which are called algorithms, provide computing
devices with step-by-step instructions for how to complete a specific task.

Reasoning processes. This aspect of Al programming focuses on
choosing the right algorithm to reach a desired outcome.

Self-correction processes. This aspect of Al programming is
designed to continually fine-tune algorithms and ensure they provide the
most accurate results possible.

Al is important because it can give enterprises insights into their
operations that they may not have been aware of previously and because,
in some cases, Al can perform tasks better than humans. Particularly when
it comes to repetitive, detail-oriented tasks like analyzing large numbers of
legal documents to ensure relevant fields are filled in properly, Al tools
often complete jobs quickly and with relatively few errors.

This has helped fuel an explosion in efficiency and opened the door
to entirely new business opportunities for some larger enterprises. Prior to
the current wave of Al, it would have been hard to imagine using computer
software to connect riders to taxis, but today Uber has become one of the
largest companies in the world by doing just that. It utilizes sophisticated
machine learning algorithms to predict when people are likely to need
rides in certain areas, which helps proactively get drivers on the road
before they're needed. As another example, Google has become one of the
largest players for a range of online services by using machine learning to
understand how people use their services and then improving them. In
2017, the company's CEO, Sundar Pichai, pronounced that Google would
operate as an "Al first" company.

Today's largest and most successful enterprises have used Al to
improve their operations and gain advantage on their competitors.

Artificial neural networks and deep learning artificial intelligence
technologies are quickly evolving, primarily because Al processes large
amounts of data much faster and makes predictions more accurately than
humanly possible.

While the huge volume of data being created on a daily basis would
bury a human researcher, Al applications that use machine learning can
take that data and quickly turn it into actionable information. As of this
writing, the primary disadvantage of using Al is that it is expensive to
process the large amounts of data that Al programming requires.
Advantages

— Good at detail-oriented jobs;

— Reduced time for data-heavy tasks;

— Delivers consistent results; and

— Al-powered virtual agents are always available.
Disadvantages

— Expensive;

— Requires deep technical expertise;

— Limited supply of qualified workers to build Al tools;

— Only knows what it's been shown; and

— Lack of ability to generalize from one task to another. (3500)

[https://www.techtarget.com/searchenterpriseai/definition/Al-Artificial-
Intelligence]

4.2. Answer the following questions:

1) How does Al work?

2) Why is artificial intelligence important?

3) What are the advantages and disadvantages of artificial
intelligence?

4.3. Translate the following sentences

1) UrpoBble ABMKKUA TPEJOCTABISIOT CpeAcTBa pa3pabOTKU, KOTOpPbHIE
MOTYT OBITh HCIIOJIb30BaHbl MPOTPAMMHUCTAMH, YTOOBI YIPOCTUTH HX
pabory. Kopoue TroBOps, NPEIOCTABISIIOT HUHCTPYMEHTHI |
(yHKIIMOHAIbHBIE BO3MOXKHOCTH JIJIs1 pa3pabOTKU UTPHI.

2) HTMLS5 nBWXXKH TOJIB3YIOTCS TMOMYJISIPHOCTBIO Cpefu pa3pabOTUYHMKOB
urp. Omun w3 Takux Turblenz, oTkpeiTas 1argpopma s
Pa3pabOTYHKOB HID.

3) On BritO4YaeT B ce0s BCE OCHOBHBIE (DYHKIIMHU, KOTOPbIE HEOOXO MBI,
yTO0OBI pa3paboTaTh, HHTETPUPOBATH U MOHETH3WPOBaTh Urpy. Kpome
TOTO, HET HUKAKMX OTrPAHWYCHUN B WCIOJIb30BAaHUHU, TaK KaK OH
JnocTyneH no jauneHsu MIT.

4) TepMuH «ATrPOBOM ABMKOK» MOSIBUICS B cepeauue 1990-x B KOHTEKCTE
KOMIIBIOTEPHBIX WP JKaHpa IMIyTep OT MEPBOTO JMIA, MOXOXKUX Ha
MOMYJIIPHYIO B TO BpeMsi Doom.

5) BONBIIMHCTBO UTPOBBIX JABUKKOB pa3pabOTaHO U HACTPOECHO JJISl TOTO,
YTOOBI 3aIIyCTUTH ONPEICIEHHYIO UTPY Ha OIpeieIEHHON m1aTdopMe.

6) I naxe wnHaubonee 0000MIEHHBIE MHOTOIIATGOPMEHHBIE JIBHUKKH
MOAXOJAT JJIsI TIOCTPOCHUS WIP OMNPECNEHHOTO »aHpa, Hampumep,
[IyTEPOB MEPBOIO JIMI[A UIU TOHOK.

7) B 1aHHOM KOHTEKCTE MOXKHO 0oJiee aKKypaTHO CKaszaTh, YTO HIPOBOM
JBI)KOK CTAaHOBUTCS HE ONTUMAJIBHBIM TMPU €r0 MPUMEHEHUU HE s
TOM UTPBI WIHM TOU MIaTGOPMBI, 1JI1 KOTOPOM pa3paboTaH.

8) Jlanusbrit 3pdekT mposABISIETCS OT TOT0, YTO MPOTPaMMHOE 0OECIICUCHHE
peJCcTaBiIsieT coO0o HAbOp KOMIPOMHMCCOB, OCHOBAHHBIX Ha TeX
PEANONI0KEHUAX, KaKOU JT0KHA OBITh Urpa.

TEXTS FOR ADDITIONAL READING

TEXT 1. Education-oriented languages

1. Read and translate the text about education-oriented languages

BASIC

BASIC (beginner’s all-purpose symbolic instruction code) was
designed at Dartmouth College in the mid-1960s by John Kemeny and
Thomas Kurtz. It was intended to be easy to learn by novices, particularly
non-computer science majors, and to run well on atime-sharing
computer with many users. It had simple data structures and notation and it
was interpreted: a BASIC program was translated line-by-line and
executed as it was translated, which made it easy to locate programming
errors.

Its small size and simplicity also made BASIC a popular language
for early personal computers. Its recent forms have adopted many of the
data and control structures of other contemporary languages, which makes
it more powerful but less convenient for beginners.

Pascal

About 1970 Niklaus Wirth of Switzerland designed Pascal to teach
structured programming, which emphasized the orderly use of conditional
and loop control structures without GOTO statements. Although Pascal
resembled ALGOL in notation, it provided the ability to define data types
with which to organize complex information, a feature beyond the
capabilities of ALGOL as well as FORTRAN and COBOL. User-defined
data types allowed the programmer to introduce names for complex data,
which the language translator could then check for correct usage before
running a program.

During the late 1970s and ’80s, Pascal was one of the most widely
used languages for programming instruction. It was available on nearly all
computers, and, because of its familiarity, clarity, and security, it was used
for production software as well as for education.

Logo

Logo originated in the late 1960s as a
simplified LISP dialect for education; Seymour Papert and others used it at
MIT to teach mathematical thinking to schoolchildren. It had a more
conventional syntax than LISP and featured “turtle graphics,” a simple
method for generating computer graphics. (The name came from an early

project to program a turtlelike robot.) Turtle graphics used body-centred
instructions, in which an object was moved around a screen by commands,
such as “left 90” and “forward,” that specified actions relative to the
current position and orientation of the object rather than in terms of a fixed
framework. Together with recursive routines, this technique made it easy
to program intricate and attractive patterns.

Hypertalk

Hypertalk was designed as “programming for the rest of us” by Bill
Atkinson for Apple’s Macintosh. Using a simple English-like syntax,
Hypertalk enabled anyone to combine text, graphics, and audio quickly
into “linked stacks” that could be navigated by clicking with a mouse on
standard buttons supplied by the program. Hypertalk was particularly
popular among educators in the 1980s and early ’90s for classroom
multimedia presentations. Although Hypertalk had many features of
object-oriented languages (described in the next section), Apple did not
develop it for other computer platforms and let it languish; as Apple’s
market share declined in the 1990s, a new cross-platform way of
displaying multimedia left Hypertalk all but obsolete (see the
section World Wide Web display languages

2. Ask five question on the text

TEXT 2
1. Read and translate the text and suggest your title for it

Object-oriented analysis and design (OOAD)is a software
engineering approach that models a system as a group of interacting
objects. Each object represents some entity of interest in the system being
modeled, and is characterized by its class, its state (data elements), and its
behavior.

Various models can be created to show the static structure, dynamic
behavior, and run-time deployment of these collaborating objects. There
are a number of different notations for representing these models, such as
the Unified Modeling Language (UML).

Object-oriented analysis (OOA) applies object-modeling techniques
to analyze the functional requirements for a system. Object-oriented design

(OOD) elaborates the analysis models to produce implementation
specifications. OOA focuses on what the system does, OOD on how the
system does it

An object-oriented system is composed of objects. The behavior of
the system results from the collaboration of those objects. Collaboration
between objects involves sending messages to each other. Sending a
message differs from calling a function in that when a target object
receives a message, it itself decides what function to carry out to service
that message. The same message may be implemented by many different
functions, the one selected depending on the state of the target object.

The implementation of "message sending" varies depending on the
architecture of the system being modeled, and the location of the objects
being communicated with.

Object-oriented analysis (OOA) looks at the problem domain, with
the aim of producing a conceptual model of the information that exists in
the area being analyzed. Analysis models do not consider any
implementation constraints that might exist, such as concurrency,
distribution, persistence, or how the system is to be built. Implementation
constraints are dealt during object-oriented design (OOD). Analysis is
done before the Design.

The sources for the analysis can be a written requirements statement,
a formal vision document, interviews with stakeholders or other interested
parties. A system may be divided into multiple domains, representing
different business, technological, or other areas of interest, each of which
are analyzed separately.

The result of object-oriented analysis is a description of what the
system is functionally required to do, in the form of a conceptual model.
That will typically be presented as a set of use cases, one or more UML
class diagrams, and a number of interaction diagrams. It may also include
some kind of user interface mock-up. The purpose of object oriented
analysis is to develop a model that describes computer software as it works
to satisfy a set of customer defined requirements.

Object-oriented design (OOD) transforms the conceptual model
produced in object-oriented analysis to take account of the constraints
imposed by the chosen architecture and any non-functional — technological
or environmental — constraints, such as transaction throughput, response
time, run-time platform, development environment, or programming
language.

The concepts in the analysis model are mapped onto implementation
classes and interfaces. The result is a model of the solution domain, a

detailed description of how the system is to be built. (3200)
[https://www.brainkart.com/article/What-is-OOAD(Object-oriented-analysis-
and-design)- 9969/]

2. Give a two-minute talk about: a) object-oriented analysis, b) object-
oriented design

TEXT 3. Rendering and its Features

1. Read and translate the following text about rendering or image
synthesis

Rendering or image synthesis is the process of generating a
photorealistic or non-photorealistic image from a 2D or 3D model by
means of a computer program. The resulting image is referred to as the
render. Multiple models can be defined in a scene file containing objects in
a strictly defined language or data structure. The scene file contains
geometry, viewpoint, texture, lighting, and shading information describing
the virtual scene. The data contained in the scene file is then passed to a
rendering program to be processed and output to a digital image or raster
graphics image file. The term "rendering" is analogous to the concept of an
artist's impression of a scene. The term "rendering" is also used to describe
the process of calculating effects in a video editing program to produce the
final video output.

Rendering is one of the major sub-topics of 3D computer graphics,
and in practice it is always connected to the others. It is the last major step
in the graphics pipeline, giving models and animation their final
appearance. With the increasing sophistication of computer graphics since
the 1970s, it has become a more distinct subject.

Rendering has uses in architecture, video games, simulators, movie
and TV visual effects, and design visualization, each employing a different
balance of features and techniques. A wide variety of renderers are
available for use. Some are integrated into larger modeling and animation
packages, some are stand-alone, and some are free open-source projects.
On the inside, a renderer is a carefully engineered program based on
multiple disciplines, including light physics, visual perception,
mathematics, and software development.

Though the technical details of rendering methods vary, the general
challenges to overcome in producing a 2D image on a screen from a 3D
representation stored in a scene file are handled by the graphics pipeline in
a rendering device such as a GPU. A GPU is a purpose-built device that
assists a CPU in performing complex rendering calculations. If a scene is
to look relatively realistic and predictable under virtual lighting, the
rendering software must solve the rendering equation. The rendering
equation doesn't account for all lighting phenomena, but instead acts as a
general lighting model for computer-generated imagery.

In the case of 3D graphics, scenes can be pre-rendered or generated
in real-time. Pre-rendering is a slow, computationally intensive process
that is typically used for movie creation, where scenes can be generated
ahead of time, while real-time rendering is often done for 3D video games
and other applications that must dynamically create scenes. 3D hardware
accelerators can improve real-time rendering performance. (2700)

[https://en.wikipedia.org/wiki/Rendering (computer graphics)]

2. What is the main idea of rendering?

3. Write a short summary of the text according to the plan (note that you
don’t have to use all the phrases).

II;man agHOTAIIMN:

1) Ha3BaHUE cTaThU (TEKCTA):

— TexkcT Ha3bIBaeTcCH. . ..

— HaszBanue cratbu, KOTOPYIO s MPOYEN. ..

— Ha3BaHue cTraTthu yKa3bIBaeT Ha TO, UTO B CTAThE TOBOPUTCH O...
2) aBTOp CTaThH, TJI€ M KOT/1a OHA ObLIa OMyOJIMKOBaHA:
— Crarbs HamuMcaHa. ... ¥ ormy0JIMKOBaHa B

— K coxasieHuto, uMsi aBTOpa HEU3BECTHO.

— TeKCT B3ST U3 UHTEPHET-UCTOYHHUKA.

3) ocCHOBHas UJiesl CTaTbU (TEKCTA):

— OcHOBHas Ujiesl TEKCTa 3aKJIF0YaeTCsS B TOM, YTO. ..

— Cratbs NMOCBAIICHA MPoOJIeMe. ..

— [lenb cTaTbu COCTOUT B TOM, YTOOHI. ..

4) coneprkaHue cTatby, GaKThl, HA3BAHUSI, ITUDPHI:

— ABTOp HAUMHAET U3JI0’KEHUE MaTepuania c ...

— ABTOp IpHBJICKaeT BHUMaHHUE YATATEIIS K BOIIPOCY...

— Oco00e BHUMaHUE yIeIsIeTCS. . .

— CornacHo JaHHBIM, MTPEJCTABICHHBIM B CTAThHE. . .

— [MoguepkuBaercs (oTMevaeTcst/ yTBepKIaeTcs/ JoOKa3bIBaeTCst/
ONPOBEPraeTcs/ CTABUTCS O]l COMHEHUE). . ..

— ABTOp IPUBOAUT MOJPOOHBINA aHAIIUS. ..

— Jlaniee onuchiBatOTCA (PaKTHI. .. (IPUBOASATCSA MPUMEPHI TOTO KakK.../
ONKCBIBAIOTCS CIyYaHu...).

— B 3akitoueHnu aBTop oT™MeuaeT (yTBep)KaaeT/ Mo JIYepKUBAET,
aKIICHTHPYEeT BHUMaHUE Ha..)

— [ToaBoAst U'TOT, aBTOP MPUXOAUT K BBHIBOIY. ..

5) Bariie MHEHHE:

— Crarbs nokazajiach MHE UHTEpECHOH (MH(OPMATUBHOM), T.K. B HEM
PUBOISTCA. . .

— Cuunrar He0OXOAMMBIM TPUBECTU HEKOTOPHIE TPUMEPHI U3 KU3HU (U3
JIPYTUX CTaTel), ONMUCHIBAIOIINE TE KE ABJICHUS, UTO U B JAHHOM
TEKCTE.

— W neu, npeasioxKeHHbIE aBTOPOM, MOTYT ObITh IPUMEHEHBI B TAKUX
00JIacTX, KaK ...

— HekoTophbie MOI0KeHUS KaKYTCS MPOTUBOPEYUBBIMU, T.K....

— Crarbst MOXKET OBITh MOJIE3HA JIJISl TEX, KTO YYUTCA HA ...

(pabotaert B cdepe...).

TEXT 4. The Four Types of Artificial Intelligence

1. Read and translate the following text about types of AI and make up a
short summary of it. Follow the plan given above

Reactive Machines

A reactive machine follows the
most basic of Al principles and, as its
name implies, is capable of only using
its intelligence to perceive and react to
the world in front of it. A reactive
machine cannot store a memory and as
a result cannot rely on past
experiences to inform decision making
in real-time.

Perceiving the world directly means that reactive machines are
designed to complete only a limited number of specialized duties.
Intentionally narrowing a reactive machine’s worldview is not any sort of
cost-cutting measure, however, and instead means that this type of Al will
be more trustworthy and reliable — it will react the same way to the same
stimuli every time.

A famous example of a reactive machine is Deep Blue, which was
designed by IBM in the 1990’s as a chess-playing supercomputer and
defeated international grandmaster Gary Kasparov in a game. Deep Blue
was only capable of identifying the pieces on a chess board and knowing
how each moves based on the rules of chess, acknowledging each piece’s
present position, and determining what the most logical move would be at
that moment. The computer was not pursuing future potential moves by its
opponent or trying to put its own pieces in better position. Every turn was
viewed as its own reality, separate from any other movement that was
made beforehand.

Another example of a game-playing reactive machine is
Google’s AlphaGo. AlphaGo is also incapable of evaluating future moves
but relies on its own neural network to evaluate developments of the
present game, giving it an edge over Deep Blue in a more complex game.
AlphaGo also bested world-class competitors of the game, defeating
champion Go player Lee Sedol in 2016.

Though limited in scope and not easily altered, reactive machine
artificial intelligence can attain a level of complexity, and offers reliability
when created to fulfill repeatable tasks.

Limited Memory

Limited memory artificial intelligence has the ability to store
previous data and predictions when gathering information and weighing
potential decisions — essentially looking into the past for clues on what
may come next. Limited memory artificial intelligence is more complex
and presents greater possibilities than reactive machines.

Limited memory Al is created when a team continuously trains a
model in how to analyze and utilize new data or an Al environment is built
so models can be automatically trained and renewed. When utilizing
limited memory Al in machine learning, six steps must be followed:
Training data must be created, the machine learning model must be
created, the model must be able to make predictions, the model must be

able to receive human or environmental feedback, that feedback must be
stored as data, and these these steps must be reiterated as a cycle.

Theory of Mind

Theory of Mind is just that — theoretical. We have not yet achieved
the technological and scientific capabilities necessary to reach this next
level of artificial intelligence.

The concept is based on the psychological premise of understanding
that other living things have thoughts and emotions that affect the behavior
of one’s self. In terms of AI machines, this would mean that Al could
comprehend how humans, animals and other machines feel and make
decisions through self-reflection and determination, and then will utilize
that information to make decisions of their own. Essentially, machines
would have to be able to grasp and process the concept of “mind,” the
fluctuations of emotions in decision making and a litany of other
psychological concepts in real time, creating a two-way relationship
between people and artificial intelligence.

Self-awareness

Once Theory of Mind can be established in artificial intelligence,
sometime well into the future, the final step will be for Al to become self-
aware. This kind of artificial intelligence possesses human-level
consciousness and understands its own existence in the world, as well as
the presence and emotional state of others. It would be able to understand
what others may need based on not just what they communicate to them
but how they communicate it.

Self-awareness in artificial intelligence relies both on human
researchers understanding the premise of consciousness and then learning

how to replicate that so it can be built into machines. (4300)
[https://www.govtech.com/computing/understanding-the-four-types-of-
artificial-intelligence.html]

2. Answer the following questions: Why is Al important? How does Al
work?

3. Prepare a report on a brief history of Artificial Intelligence

TEXT 5. Basic Concepts of Linux

1. Read and translate the text about Linux system

Linux looks and feels much like any other UNIX system; indeed,
UNIX compatibility has been a major design goal of the Linux project.
However, Linux is much younger than most UNIX systems. Its
development began in1991, when a Finnish university student, Linus
Torvalds, began developing a small but self-contained kernel for the 80386
processor, the first true 32-bitprocessor in Intel’s range of PC-compatible
CPUs. of arbitrary files (but only read-only memory mapping was
implemented in 1.0).

A range of extra hardware support was included in this release.
Although still restricted to the Intel PC platform, hardware support had
grown to include floppy-disk and CD-ROM devices, as well as sound
cards, a range of mice, and international keyboards. Floating-point
emulation was provided in the kernel for 80386 users who had no 80387
math coprocessor. System V UNIX-style interprocess communication
(IPC), including shared memory, semaphores, and message queues, was
implemented.

Linux kernel is composed entirely of code written from scratch
specifically for the Linux project, much of the supporting software that
makes up the Linux system is not exclusive to Linux but is common to a
number of UNIX-like operating systems. In particular, Linux uses many
tools developed as part of Berkeley’s BSD operating system, MIT’s X
Window System, and the Free Software Foundation’s GNU project.

This sharing of tools has worked in both directions. The main system
libraries of Linux were originated by the GNU project, but the Linux
community greatly improved the libraries by addressing omissions,
inefficiencies, and bugs. Other components, such as the GNU C compiler
(gcc), were already of sufficiently high quality to be used directly in
Linux. The network administration tools under Linux were derived from

code first developed for 4.3 BSD, but more recent BSD derivatives, such
as FreeBSD, have borrowed code from Linux in return. Examples of this
sharing include the Intel floating-point-emulation math library and the PC
sound-hardware device drivers.

The Linux system as a whole is maintained by a loose network of
developers collaborating over the Internet, with small groups or
individuals having responsibility for maintaining the integrity of specific
components.

A small number of public Internet file-transfer-protocol (FTP)
archive sites act as de facto standard repositories for these components.
The File System Hierarchy Standard document is also maintained by the
Linux community as a means of ensuring compatibility across the various
system components.

This standard specifies the overall layout of a standard Linux file
system; it determines under which directory names configuration files,
libraries, system binaries, and run-time data files should be stored.

Linux Distributions

In theory, anybody can install a Linux system by fetching the latest
revisions of the necessary system components from the FTP sites and
compiling them. In Linux’s early days, this is precisely what a Linux user
had to do. As Linux has matured, however, various individuals and groups
have attempted to make this job less painful by providing standard,
precompiled sets of packages for easy installation.

These collections, or distributions, include much more than just the
basic Linux system. They typically include extra system-installation and
management utilities, as well as precompiled and ready-to-install packages
of many of the common UNIX tools, such as news servers, web browsers,
text-processing and editing tools, and even games.

The first distributions managed these packages by simply providing a
means of unpacking all the files into the appropriate places. One of the
important contributions of modern distributions, however, is advanced
package management. Today’s Linux distributions include a package-
tracking database that allows packages to be installed, upgraded, or

removed painlessly. (3900)
[Abridged from https://www.brainkart.com/article/Linux-System---Basic-
Concepts 9864/]

2. Test yourself. If you don’t know the answers for some questions, you
can find them in Internet later for homework

What do you know about Linux?

1. Linux development began in ...?
a) 1978
b) 1991
c) 2001
2. How many basic elements or components of Linux are there?
a) S
b) 3
c)6
3. What is the main component of Linux OS?
a) hardware
b) kernel
c) shell
4. What i1s Linux shell?
a) a user interface present between user and kernel.
b) a type of process that can be in a number of different states.
c) a resource manager that acts as a bridge between hardware and
software.
5) What is CLI?
a) a command-line program that usually accepts text as input to execute
or run functions of the operating system.
b) a human-computer interface that allows users to interact with
electronic devices through graphical icons and visual indicators.
6. The Linux system as a whole 1s maintained ...
a) by long-term public support.
b) by a loose network of developers collaborating over the Internet.
7. Name command that is used to remove files.
a) delete
b) dr
c) rm
d) None of the above
8. Name the person who developed Linux.
a) Linus Torvalds
b) Dennis Ritchie

c¢) Prof. Andrew S. Tannenbaum
d) None of the above
9. Maximum size (in bytes) of the filename in Linux can be?
a) 64 bytes
b) 32 bytes
c) 128 bytes
d) 255 bytes
10. What are the characteristics of Linux OS?
a) It is an open-source and free-to-use.
b) It is not open source and is not free to use.
c) It has very low hardware requirements and facilitates powerful
support for networking.

d) None of the above.

Answer key to the task: 1.b); 2.a); 3.b); 4.a); 5.a); 6.b); 7.b); 8.d);
9.c); 10.a).

TEXT 6. A Developer’s Guide to Communicating with Clients

1. Read and translate the following text about a successful conversation
between a software developer and a client

If you are a developer that does not always feel comfortable to
communicate with the clients and all you want to do is just code and more
code, then this article is created with you in my mind.

1) Informing clients that you have received a task

The first thing that crossed my mind as important is noting clients
you have received a task that has been assigned to you. Maybe some of
you might think how this is a no brainer but this little step is very
important in everyday communication.

Situation A) The client assigns a task. A developer is available to look
at it.

Solution: You should inform the client that you will look at it right away
and come back to him with the more informed feedback or you can take a
quick look and in the first response provide some questions to better
understand what needs to be done.

Situation B) The client assigns a task. A developer is not free to look at it
immediately.
Solution: Thank them for providing information regarding the task and
inform them that you will start with it as soon as possible. This way you
have let them know that you are not available at the moment, but as soon
as you will be, you will work on 1it.
Do not:
— Ignore the task for a day or couple of days while you don’t become
available for resolving process.
— Share additional information of why you cannot take this task right
away. You will just complicate things that shouldn’t be complicated.
2) Frequently updating the client about the task progress
In most cases, a developer would inform the client that he has started with
the task and he would not give any updates until he’s not finished. If we
are talking about a task that needs a day or two to be completed, it is
definitely right approach, as we don’t want to burden the client with too
much updates. However, more time-consuming tasks that need at least 7-
10 days to be fulfilled should be given updates from time to time.
The status updates shouldn’t be:
— Too big or too short
— Too often (i.e. if you are working on it for 7 days, 3 updates are
enough)

Solution: You can start with it now and at the end of the day update the
client about the progress. At least you have done something.
Solution: You should be honest with what is going on. You were busy
with the emergency task(s) and you are starting with this task now. You
will apologies and prioritise this task. Maybe the client will not be satisfied
with these explanations at the moment, but don’t be afraid. He will
appreciate your honesty after some time.
Do not:
— Lie to the client that you have done something which in reality you
have not even started yet. Remember that lies always come out in the
end.
3) Avoiding writing too long posts

You should remember that the client doesn’t have the time to read
long posts, especially if something can be said in short and without
complications. If you have written too long post, it might seem that you

didn’t understand the task well. So always try to simplify things, if you
can.

4) Notifying the client on the time about your vacations and
obligations

Inform the client about your planned vacation in advance so that he
can plan tasks towards you. Also, don’t take any complex tasks knowing
that in the middle of their progress you will be gone and not available to
check upon them. When you are about to go on a vacation, name another
developer to be on the service if something is urgent.

In the situation when you got sick or have some unexpected things to
deal with, ask your teammates or team leader to write a quick note that you
will be unavailable for a specific period of time on projects you work.
With these approaches you will receive a lot of respect from the client.

But what should you do if the project is progressing slowly because
of the client and now you have a 2 weeks delay from release? This is
something that definitely requires individual approach and a deeper
analysis of the situation. If you are very indecisive about how to react, the
following question will maybe help to make a right decision:

— How important is this project for your company?

— Will this project really be launched in 2 weeks or maybe in 4-6

weeks?

— Can someone fulfill your position while you are away?
If you are willing to give it a try and move your vacation towards the
project, you should let the client know that you’ve decided to stay in order
to get things done, but make a clear deadline for how long you will be
available. This way you will not feel guilty if another deadline is passed.
If you have mastered these skills in your everyday work then clients
probably enjoy working with you.
What to do in the situation when the client is angry and rude?

From my experience, it is important tonot be emotionally
involved with a message and to respond cool-headed. The tone of the
message should be calm and with respect. Don’t be afraid even if it is your
mistake. Examine the situation — why did this happen and can it be fixed.
Try to propose a solution. If you are not sure how to handle this situation,
ask for your team leader to jump in.The fact is that good communication is

sure evidence of a future long-term relationship. (4190)
[Abridged from https://inchoo.net/life-at-inchoo/developers-guide-
communicating-clients/ by Antonija Tadic]

3. Imagine that you're in one of the situations mentioned above.
Dramatize a dialogue with your group mates in class on the topic
‘communicating with a client’

TEXT 7. Polymorphism, Encapsulation, and Inheritance Work
Together

1. Read and translate the following text

When properly applied, polymorphism, encapsulation, and
inheritance combine to produce a programming environment that supports
the development of far more robust and scaleable programs than does the
process-oriented model. A well-designed hierarchy of classes is the basis
for reusing the code in which you have invested time and effort developing
and testing. Encapsulation allows you to migrate your implementations
over time without breaking the code that depends on the public interface of
your classes. Polymorphism allows you to create clean, sensible, readable,
and resilient code.

Of the two real-world examples, the automobile more completely
illustrates the power of object-oriented design. Dogs are fun to think about
from an inheritance standpoint, but cars are more like programs. All
drivers rely on inheritance to drive different types (subclasses) of vehicles.
Whether the vehicle i1s a school bus, a Mercedes sedan, a Porsche, or the
family minivan, drivers can all more or less find and operate the steering
wheel, the brakes, and the accelerator. After a bit of gear grinding, most
people can even manage the difference between a stick shift and an
automatic, because they fundamentally understand their common
superclass, the transmission.

People interface with encapsulated features on cars all the time. The
brake and gas pedals hide an incredible array of complexity with an
interface so simple you can operate them with your feet! The
implementation of the engine, the style of brakes, and the size of the tires
have no effect on how you interface with the class definition of the pedals.

The final attribute, polymorphism, is clearly reflected in the ability of
car manufacturers to offer a wide array of options on basically the same
vehicle. For example, you can get an antilock braking system or traditional
brakes, power or rack-and-pinion steering, and 4-, 6-, or 8-cylinder
engines. Either way, you will still press the brake pedal to stop, turn the

steering wheel to change direction, and press the accelerator when you
want to move. The same interface can be used to control a number of
different implementations.

As you can see, it is through the application of encapsulation,
inheritance, and polymorphism that the individual parts are transformed
into the object known as a car. The same is also true of computer
programs. By the application of object-oriented principles, the various
parts of a complex program can be brought together to form a cohesive,
robust, maintainable whole.

As mentioned at the start of this section, every Java program is
object-oriented. Or, put more precisely, every Java program involves
encapsulation, inheritance, and polymorphism. Although the short example
programs shown in the rest of this chapter and in the next few chapters
may not seem to exhibit all of these features, they are nevertheless present.
As you will see, many of the features supplied by Java are part of its built-
in class libraries, which do make extensive use of encapsulation,

inheritance, and polymorphism.
[https://www.brainkart.com/article/Object-Oriented-Programming 10384/]

2. Ask five questions on the text about polymorphism, encapsulation, and
inheritance

TEXT 8. Role of Process in Software Quality

The need for software products of high quality has pressured those in
the profession to identify and quantify quality factors such as usability,
testability, maintainability, and reliability, and to identify engineering
practices that support the production of quality products having these
favorable attributes. Among the practices identified that contribute to the
development of high-quality software are project planning, requirements
management, development of formal specifications, structured design with
use of information hiding and encapsulation, design and code reuse,
inspections and reviews, product and process measures, education and
training of software professionals, development and application of CASE
tools, use of effective testing techniques, and integration of testing
activities into the entire life cycle. In addition to identifying these
individual best technical and managerial practices, software researchers
realized that it was important to integrate them within the context of a
high-quality software development process.

What is a process in software development?
¢ Process, in the software engineering domain, is the set of methods,
practices, standards, documents, activities, policies, and procedures
that software engineers use to develop and maintain a software
system and its associated artifacts, such as project and test plans,
design documents, code, and manuals.

Activitics

Standards
and documents

| \ Plans
Practices
45, mx

—_— -

\. sion 1 0
Methods and Procedures
lf-.llllh.'uth
1 Process evolurion

.’/\rr1|>\

i 1.1 “\‘.
NG ey
1‘\,/

Fig. 13. Components of an engineering process

Policies

It also was clear that adding individual practices to an existing
software development process in an ad hoc way was not satisfactory. The
software development process, like most engineering artifacts, must be
engineered. That is, it must be designed, implemented, evaluated, and
maintained. As in other engineering disciplines, a software development
process must evolve in a consistent and predictable manner, and the best
technical and managerial practices must be integrated in a systematic way.
These models allow an organization to evaluate its current software
process and to capture an understanding of its state. Strong support for
incremental process improvement is provided by the models, consistent
with historical process evolution and the application of quality principles.
The models have received much attention from industry, and resources
have been invested in process improvement efforts with many successes
recorded.

All the software process improvement models that have had wide
acceptance in industry are high-level models, in the sense that they focus

on the software process as a whole and do not offer adequate support to
evaluate and improve specific software development sub processes such as
design and testing. Most software engineers would agree that testing is a
vital component of a quality software process, and is one of the most
challenging and costly activities carried out during software development

and maintenance. (2900)
[https://www.brainkart.com/article/Role-of-process-in-software-quality 9136/]

2. Explain in your own words the following terms ‘process’, ‘software
development process’, ‘models” and ‘techniques’

TEXT 9. Mobile Computing Applications

1. Read and translate the following text about mobile computing

For Estate Agents

Estate agents can work either at home or out in the field. With mobile
computers they can be more productive. They can obtain current real estate
information by accessing multiple listing services, which they can do from
home, office or car when out with clients. They can provide clients with
immediate feedback regarding specific homes or neighbourhoods, and
with faster loan approvals, since applications can be submitted on the spot.
Therefore, mobile computers allow them to devote more time to clients.

Emergency Services

Ability to receive information on the move is vital where the
emergency services are involved. Information regarding the address, type
and other details of an incident can be dispatched quickly, via a CDPD
system using mobile computers, to one or several appropriate mobile units
which are in the vicinity of the incident. Here the reliability and security
implemented in the CDPD system would be of great advantage.

Case #: M Incident Typpe: D escriplion Aezp #Cars

[9601742 | [M] [MOTOR VEHICLE ACCIDENT | [FOUR CAR PILE UP Mz ¥2 |

Officer Supervis Dispatchr State [CT | Region: (01 | Alarm Code: |01 |

|sMITH |[ROGER|[DOE | Wing: | | Business: |

Bs/Az Hoult Aptl Occuned On Stheet Intersect Strest: Prige Calls? |

| Il |]123 MAIN STREET [{PIME STREET |[N2A |i

Reporting> Lname: [JOHMSON | Address: [126 MAIN STREET 1
Party> Frame: [BRIAN | Phone: [(203) 5551212 I!

MOTOR VEHICLE ACCIDENT INVOLVING 4 CARS. EYE WITHESS SAYS BELUE FORD RAMN A RED
II;'EHKT AND HIT 20THER CARS AT INTERSECTION FORCING A WHITE ACURA INTD ANMOTHER |
REED CAR.

Date Recsived Dispatched Amival Cleared |

Paperwork: [] Tracking: [v | [1720095 |[o0:25.02 | [00:29:00] [00:33:46 | | |
Dates> Infraction: | | Cout: | | |
prev a1l | |ICE7 New 4§ Close ‘

| Dala received from DISPATCH @ 075748, - EEEITE | 10/27/95 | 7:58:06 AM

Fig. 14. Police incident information screen

In courts

Defence counsels can take mobile computers in court. When the
opposing counsel references a case which they are not familiar, they can
use the computer to get direct, real-time access to on-line legal database
services, where they can gather information on the case and related
precedents. Therefore mobile computers allow immediate access to a
wealth of information, making people better informed and prepared.

In companies

Managers can use mobile computers in, say, critical presentations to
major customers. They can access the latest market share information. At a
small recess, they can revise the presentation to take advantage of this
information. They can communicate with the office about possible new
offers and call meetings for discussing responds to the new proposals.
Therefore, mobile computers can leverage competitive advantages.

Stock Information Collation/Control

In environments where access to stock is very limited 1i.e.: factory
warehouses. The use of small portable electronic databases accessed via a
mobile computer would be ideal. Data collated could be directly written to
a central database, via a CDPD network, which holds all stock information
hence the need for transfer of data to the central computer at a later date is
not necessary. This ensures that from the time that a stock count is

completed, there is no inconsistency between the data input on the portable
computers and the central database.

Credit Card Verification

At Point of Sale (POS) terminals in shops and supermarkets, when
customers use credit cards for transactions, the intercommunication
required between the bank central computer and the POS terminal, in order
to effect verification of the card usage, can take place quickly and securely
over cellular channels using a mobile computer unit. This can speed up the
transaction process and relieve congestion at the POS terminals.

Taxi/Truck Dispatch

Using the idea of a centrally controlled dispatcher with several
mobile units (taxis), mobile computing allows the taxis to be given full
details of the dispatched job as well as allowing the taxis to communicate
information about their whereabouts back to the central dispatch office.
This system is also extremely useful in secure deliveries ie: Securicor. This
allows a central computer to be able to track and receive status information
from all of its mobile secure delivery vans. Again, the security and
reliability properties of the CDPD system shine through.

Private Radio = Trunked Radio [limited
Public Data Networks RAM Mobitex - ARDIS - CDPD

Call Takers [CSA) /r
Radio Controller Dispatch Desks (DSA)
2 \
THE
DISPATCHER
\. /

+—

Accounting Fleet Mn'tc
Software Software

GPS tracking
System

Fig. 15. Taxi Dispatch Network

Electronic Mail/Paging

Usage of a mobile unit to send and read emails is a very useful asset
for any business individual, as it allows him/her to keep in touch with any
colleagues as well as any urgent developments that may affect their work.
Access to the Internet, using mobile computing technology, allows the
individual to have vast arrays of knowledge at his/her fingertips. Paging is
also achievable here, giving even more intercommunication capability

between individuals, using a single mobile computer device. (4000)
[https://www.brainkart.com/article/Mobile-Computing-Applications 9874/]

3. Explain in your own words each type of the mobile applications
described above

COMPUTER TERMS GLOSSARY

abstraction. The separation of the logical properties of data or function from its
implementation in a computer program. See: encapsulation, information hiding,
software engineering.

access time. The time interval between the instant at which a call for data is initiated
and the instant at which the delivery of the data is completed.

accuracy.) (1) A qualitative assessment of correctness or freedom from error. (2) A
quantitative measure of the magnitude of error. Contrast with precision. (3) The
measure of an instrument's capability to approach a true or absolute value. It is a
function of precision and bias.

algorithm. (1) A finite set of well-defined rules for the solution of a problem in a
finite number of steps. (2) Any sequence of operations for performing a specific task.

analog device. A device that operates with variables represented by continuously
measured quantities such as pressures, resistances, rotations, temperatures, and
voltages.

application software. Software designed to fill specific needs of a user; for
example, software for navigation, payroll, or process control. Contrast with support
software; system software.

architectural design. (1) The process of defining a collection of hardware and
software components and their interfaces to establish the framework for the
development of a computer system. (2) The result of the process in (1).

archival database. An historical copy of a database saved at a significant point in
time for use in recovery or restoration of the database.

archive file. A file that is part of a collection of files set aside for later research or
verification, for security purposes, for historical or legal purposes, or for backup.

arithmetic logic unit. The [high speed] circuits within the CPU which are
responsible for performing the arithmetic and logical operations of a computer.

array. An n-dimensional ordered set of data items identified by a single name and
one or more indices, so that each element of the set is individually addressable; e.g., a
matrix, table, or vector.

assembler. A computer program that translates programs [source code files] written
in assembly language into their machine language equivalents [object code files].
Contrast with compiler, interpreter.

assembly language. A low level programming language, that corresponds closely to
the instruction set of a given computer, allows symbolic naming of operations and

addresses, and usually results in a one-to-one translation of program instructions
[mnemonics] into machine instructions. See: low-level language.

asynchronous. Occurring without a regular time relationship, 1i.e., timing
independent.

BIOS. basic input/output system.

BASIC. An acronym for Beginners All-purpose Symbolic Instruction Code, a high-
level programming language intended to facilitate learning to program in an
interactive environment.

basic input/output system. Firmware that activates peripheral devices in a PC.
Includes routines for the keyboard, screen, disk, parallel port and serial port, and for
internal services such as time and date. It accepts requests from the device drivers in
the operating system as well from application programs. It also contains autostart
functions that test the system on startup and prepare the computer for operation. It
loads the operating system and passes control to it.

batch processing. Execution of programs serially with no interactive processing.
Contrast with real time processing.

bias. A measure of how closely the mean value in a series of replicate measurements
approaches the true value. See: accuracy, precision, calibration.

binary. The base two number system. Permissible digits are "0" and "1".

bit. A contraction of the term binary digit. The bit is the basic unit of digital data. It
may be in one of two states, logic 1 or logic 0.

block. (1) A string of records, words, or characters that for technical or logical
purposes are treated as a unity. (2) A collection of contiguous records that are
recorded as a unit, and the units are separated by interblock gaps. (3) In programming
languages, a subdivision of a program that serves to group related statements, delimit
routines, specify storage allocation, delineate the applicability of labels, or segment
parts of the program for other purposes. In FORTRAN, a block may be a sequence of
statements; in COBOL, it may be a physical record.

block diagram. A diagram of a system, instrument or computer, in which the
principal parts are represented by suitably annotated geometrical figures to show both
the basic functions of the parts and the functional relationships between them.

block length. (1) The number of records, words or characters in a block. (2) A
measure of the size of a block, usually specified in units such as records, words,
computer words, or characters.

boot. (1) To initialize a computer system by clearing memory and reloading the
operating system. (2) To cause a computer system to reach a known beginning state.

bootstrap. A short computer program that is permanently resident or easily loaded
into a computer and whose execution brings a larger program, such an operating
system or its loader, into memory.

buffer. A device or storage area [memory] used to store data temporarily to
compensate for differences in rates of data flow, time of occurrence of events, or
amounts of data that can be handled by the devices or processes involved in the
transfer or use of the data.

bug. A fault in a program which causes the program to perform in an unintended or
unanticipated manner. See: anomaly, defect, error, exception, fault.

bus. A common pathway along which data and control signals travel between
different hardware devices within a computer system.

byte. A sequence of adjacent bits, usually eight, operated on as a unit.

CAM. computer aided manufacturing. The automation of manufacturing systems and
techniques, including the use of computers to communicate work instructions to
automate machinery for the handling of the processing [numerical control, process
control, robotics, material requirements planning] needed to produce a workpiece.

CASE. computer aided software engineering. An automated system for the support of
software development including an integrated tool set, i.e., programs, which facilitate
the accomplishment of software engineering methods and tasks such as project
planning and estimation, system and software requirements analysis, design of data
structure, program architecture and algorithm procedure, coding, testing and
maintenance.

COTS. configurable, off-the-shelf software. Application software, sometimes general
purpose, written for a variety of industries or users in a manner that permits users to
modify the program to meet their individual needs.

CPU. central processing unit. The unit of a computer that includes the circuits
controlling the interpretation of program instructions and their execution. The CPU
controls the entire computer. It receives and sends data through input-output
channels, retrieves data and programs from memory, and conducts mathematical and
logical functions of a program.

C. A general purpose high-level programming language. Created for use in the
development of computer operating systems software. It strives to combine the power
of assembly language with the ease of a high-level language.

C++. An object-oriented high-level programming language.
change tracker. A software tool which documents all changes made to a program.

client-server. A term used in a broad sense to describe the relationship between the
receiver and the provider of a service. In the world of microcomputers, the term

client-server describes a networked system where front-end applications, as the
client, make service requests upon another networked system.

COBOL. Acronym for COmmon Business Oriented Language. A high-level
programming language intended for use in the solution of problems in business data
processing.

code audit. An independent review of source code by a person, team, or tool to
verify compliance with software design documentation and programming standards.

code inspection. A manual [formal] testing [error detection] technique where the
programmer reads source code, statement by statement, to a group who ask questions
analyzing the program logic, analyzing the code with respect to a checklist of
historically common programming errors, and analyzing its compliance with coding
standards.

coding. (1) In software engineering, the process of expressing a computer program
in a programming language. (2) The transforming of logic and data from design
specifications (design descriptions) into a programming language.

comparator. A software tool that compares two computer programs, files, or sets of
data to identify commonalities or differences. Typical objects of comparison are
similar versions of source code, object code, data base files, or test results.

compatibility. The capability of a functional unit to meet the requirements of a
specified interface.

compilation. Translating a program expressed in a problem-oriented language or a
procedure oriented language into object code.

compiler. (1) A computer program that translates programs expressed in a high-level
language into their machine language equivalents. (2) The compiler takes the finished
source code listing as input and outputs the machine code instructions that the
computer must have to execute the program.

computer. A functional unit that can perform substantial computations, including
numerous arithmetic operations, or logic operations, without human intervention
during a run.

computer aided design. The use of computers to design products. CAD systems are
high speed workstations or personal computers using CAD software and input
devices such as graphic tablets and scanners to model and simulate the use of
proposed products.

computer language. A language designed to enable humans to communicate with
computers. See: programming language.

computer system. A functional unit, consisting of one or more computers and
associated peripheral input and output devices, and associated software.

configuration. (1) The arrangement of a computer system or component as defined
by the number, nature, and interconnections of its constituent parts. (2) In
configuration management, the functional and physical characteristics of hardware or
software as set forth in technical documentation or achieved in a product.

control flow. In programming languages, an abstraction of all possible paths that an
execution sequence may take through a program.

controller. Hardware that controls peripheral devices such as a disk or display
screen. It performs the physical data transfers between main memory and the
peripheral device.

cross-compiler. A compiler that executes on one computer but generates assembly
code or object code for a different computer.

DOS. disk operating system.

data. Representations of facts, concepts, or instructions in a manner suitable for
communication, interpretation, or processing by humans or by automated means.

data analysis. Evaluation of the data structure and usage in the code to ensure each
is defined and used properly by the program. Usually performed in conjunction with
logic analysis.

data bus. A bus used to communicate data internally and externally to and from a
processing unit or a storage device.

data element. (1) A named unit of data that, in some contexts, is considered
indivisible and in other contexts may consist of data items. (2) A named identifier of
each of the entities and their attributes that are represented in a database.

data flow analysis. A software V&V task to ensure that the input and output data
and their formats are properly defined, and that the data flows are correct.

data integrity. The degree to which a collection of data is complete, consistent, and
accurate.

data set. A collection of related records. Syn: file.

data structure. A physical or logical relationship among data elements, designed to
support specific data manipulation functions.

data validation. A process used to determine if data are inaccurate, incomplete, or
unreasonable. The process may include format checks, completeness checks, check
key tests, reasonableness checks and limit checks.

database. A collection of interrelated data, often with controlled redundancy,
organized according to a schema to serve one or more applications. The data are
stored so that they can be used by different programs without concern for the data
structure or organization.

dead code. Program code statements which can never execute during program
operation. Such code can result from poor coding style, or can be an artifact of
previous versions or debugging efforts. Dead code can be confusing, and is a
potential source of erroneous software changes.

debugging. Determining the exact nature and location of a program error, and fixing
the error.

design. The process of defining the architecture, components, interfaces, and other
characteristics of a system or component.

design phase. The period of time in the software life cycle during which the designs
for architecture, software components, interfaces, and data are created, documented,
and verified to satisfy requirements.

design requirement. A requirement that specifies or constrains the design of a
system or system component.

design standards. Standards that describe the characteristics of a design or a design
description of data or program components.

developer. A person, or group, that designs and/or builds and/or documents and/or
configures the hardware and/or software of computerized systems.

development methodology. A systematic approach to software creation that defines
development phases and specifies the activities, products, verification procedures,
and completion criteria for each phase.

different software system analysis. Analysis of the allocation of software
requirements to separate computer systems to reduce integration and interface errors
related to safety. Performed when more than one software system is being integrated.

digital. Pertaining to data [signals] in the form of discrete integral values.

disk operating system. An operating system program; e.g., DR-DOS from Digital
Research, MS-DOS from Microsoft Corp., OS/2 from IBM, PC-DOS from IBM,
System-7 from Apple.

driver. A program that links a peripheral device or internal function to the operating
system, and providing for activation of all device functions.

dynamic analysis. Analysis that is performed by executing the program code.

editing. Modifying the content of the input by inserting, deleting, or moving
characters, numbers, or data.

embedded software. Software that is part of a larger system and performs some of
the requirements of that system; e.g., software used in an aircraft or rapid transit
system. Such software does not provide an interface with the user. See: firmware.

encapsulation. A software development technique that consists of isolating a system
function or a set of data and the operations on those data within a module and
providing precise specifications for the module.

end user. A person, device, program, or computer system that uses an information
system for the purpose of data processing in information exchange.

error. A discrepancy between a computed, observed, or measured value or condition
and the true, specified, or theoretically correct value or condition.

error detection. Techniques used to identify errors in data transfers. See: check
summation, cyclic redundancy check [CRC], parity check, longitudinal redundancy.

execution trace. A record of the sequence of instructions executed during the
execution of a computer program. Often takes the form of a list of code labels
encountered as the program executes.

FTP. file transfer protocol.

failure. The inability of a system or component to perform its required functions
within specified performance requirements.

failure analysis. Determining the exact nature and location of a program error in
order to fix the error, to identify and fix other similar errors, and to initiate corrective
action to prevent future occurrences of this type of error.

fault. An incorrect step, process, or data definition in a computer program which
causes the program to perform in an unintended or unanticipated manner.

file. (1) A set of related records treated as a unit; e.g., in stock control, a file could
consists of a set of invoices. (2) The largest unit of storage structure that consists of a
named collection of all occurrences in a database of records of a particular record

type.

file maintenance. The activity of keeping a file up to date by adding, changing, or
deleting data.

file transfer protocol. (1) Communications protocol that can transmit binary and
ASCII data files without loss of data. See: Kermit, Xmodem, Ymodem, Zmodem. (2)
TCP/IP protocol that is used to log onto the network, list directories, and copy files. It
can also translate between ASCII and EBCDIC.

firmware. The combination of a hardware device; e.g., an IC; and computer
instructions and data that reside as read only software on that device. Such software
cannot be modified by the computer during processing.

FORTRAN. An acronym for FORmula TRANslator, the first widely used high-level
programming language. Intended primarily for use in solving technical problems in
mathematics, engineering, and science.

functional analysis. Verifies that each safety-critical software requirement is
covered and that an appropriate criticality level is assigned to each software element.

functional configuration audit. An audit conducted to verify that the development
of a configuration item has been completed satisfactorily, that the item has achieved
the performance and functional characteristics specified in the functional or allocated
configuration identification, and that its operational and support documents are
complete and satisfactory.

gigabyte. Approximately one billion bytes; precisely 230 or 1,073,741,824 bytes.

graph. A diagram or other representation consisting of a finite set of nodes and
internode connections called edges or arcs.

graphic software specifications. Documents such as charts, diagrams, graphs which
depict program structure, states of data, control, transaction flow, HIPO, and cause-
effect relationships; and tables including truth, decision, event, state-transition,
module interface, exception conditions/responses necessary to establish design
integrity.

hardware. Physical equipment, as opposed to programs, procedures, rules, and
associated documentation.

high-level language. A programming language which requires little knowledge of
the target computer, can be translated into several different machine languages,
allows symbolic naming of operations and addresses, provides features designed to
facilitate expression of data structures and program logic, and usually results in
several machine instructions for each program statement. Examples are PL/I,
COBOL, BASIC, FORTRAN, Ada, Pascal, and "C".

1/0. input/output.
ISO. International Organization for Standardization.

implementation. The process of translating a design into hardware components,
software components, or both.

implementation phase. The period of time in the software life cycle during which a
software product is created from design documentation and debugged.

implementation requirement. A requirement that specifies or constrains the coding
or construction of a system or system component.

incremental development. A software development technique in which
requirements definition, design, implementation, and testing occur in an overlapping,
iterative [rather than sequential] manner, resulting in incremental completion of the
overall software product.

information hiding. The practice of "hiding" the details of a function or structure,
making them inaccessible to other parts of the program.

input/output. Each microprocessor and each computer needs a way to communicate
with the outside world in order to get the data needed for its programs and in order to
communicate the results of its data manipulations. This is accomplished through I/0
ports and devices.

installation. The phase in the system life cycle that includes assembly and testing of
the hardware and software of a computerized system. Installation includes installing a
new computer system, new software or hardware, or otherwise modifying the current
system.

installation and checkout phase. The period of time in the software life cycle
during which a software product is integrated into its operational environment and
tested in this environment to ensure that it performs as required.

instruction. (1) program statement that causes a computer to perform a particular
operation or set of operations. (2) In a programming language, a meaningful
expression that specifies one operation and identifies its operands, if any.

integrated circuit (IC). Small wafers of semiconductor material [silicon] etched or
printed with extremely small electronic switching circuits. Syn: chip.

interface. A shared boundary between two functional units, defined by functional
characteristics, ~common physical interconnection characteristics, signal
characteristics, and other characteristics, as appropriate. The concept involves the
specification of the connection of two devices having different functions.

interpret. To translate and execute each statement or construct of a computer
program before translating and executing the next.

interpreter. A computer program that translates and executes each statement or
construct of a computer program before translating and executing the next. The
interpreter must be resident in the computer each time a program [source code file]
written in an interpreted language is executed.

invalid inputs. Test data that lie outside the domain of the function the program
represents.

KB. kilobyte. Approximately one thousand bytes. This symbol is used to describe the
size of computer memory or disk storage space. Because computers use a binary
number system, a kilobyte is precisely 210 or 1024 bytes.

key element. An individual step in an critical control point of the manufacturing
process.

life cycle methodology. The use of any one of several structured methods to plan,
design, implement, test. and operate a system from its conception to the termination
of its use. See: waterfall model.

linkage editor. A computer program that creates a single load module from two or
more independently translated object modules or load modules by resolving cross
references among the modules and, possibly, by relocating elements. Syn: link editor

loader. A program which copies other [object] programs from auxiliary [external]
memory to main [internal] memory prior to its execution.

low-level language. The advantage of assembly language is that it provides bit-level
control of the processor allowing tuning of the program for optimal speed and
performance. For time critical operations, assembly language may be necessary in
order to generate code which executes fast enough for the required operations. The
disadvantage of assembly language is the high-level of complexity and detail required
in the programming. This makes the source code harder to understand, thus
increasing the chance of introducing errors during program development and
maintenance.

Mb. megabit. Approximately one million bits. Precisely 1024 K bits, 220 bits, or
1,048,576 bits.

MB. megabyte. Approximately one million bytes. Precisely 1024 K Bytes, 220 bytes,
or 1,048,576 bytes. See: kilobyte.

MIPS. million instructions per second.

machine code. Computer instructions and definitions expressed in a form [binary
code] that can be recognized by the CPU of a computer. All source code, regardless
of the language in which it was programmed, is eventually converted to machine
code. Syn: object code.

macroinstruction. A source code instruction that is replaced by a predefined
sequence of source instructions, usually in the same language as the rest of the
program and usually during assembly or compilation.

main memory. A non-moving storage device utilizing one of a number of types of
electronic circuitry to store information.

main program. A software component that is called by the operating system of a
computer and that usually calls other software components. See: routine, subprogram.

maintenance. Activities such as adjusting, cleaning, modifying, overhauling
equipment to assure performance in accordance with requirements. Maintenance to a
software system includes correcting software errors, adapting software to a new
environment, or making enhancements to software.

measure. A quantitative assessment of the degree to which a software product or
process possesses a given attribute.

megahertz. A unit of frequency equal to one million cycles per second.

memory. Any device or recording medium into which binary data can be stored and
held, and from which the entire original data can be retrieved.

menu. A computer display listing a number of options; e.g., functions, from which
the operator may select one. Sometimes used to denote a list of programs.

metric, software quality. A quantitative measure of the degree to which software
possesses a given attribute which affects its quality.

microcode. Permanent memory that holds the elementary circuit operations a
computer must perform for each instruction in its instruction set.

microprocessor. A CPU existing on a single IC. Frequently synonymous with a
microcomputer.

modeling. Construction of programs used to model the effects of a postulated
environment for investigating the dimensions of a problem for the effects of
algorithmic processes on responsive targets.

module. (1) In programming languages, a self- contained subdivision of a program
that may be separately compiled. (2) A discrete set of instructions, usually processed
as a unit, by an assembler, a compiler, a linkage editor, or similar routine or
subroutine. (3) A packaged functional hardware unit suitable for use with other
components. See: unit.

multi-processing. A mode of operation in which two or more processes [programs]
are executed concurrently [simultaneously] by separate CPUs that have access to a
common main memory. Contrast with multi-programming.

multi-programming. A mode of operation in which two or more programs are
executed in an interleaved manner by a single CPU.

multi-tasking. A mode of operation in which two or more tasks are executed in an
interleaved manner.

network. (1) An arrangement of nodes and interconnecting branches. (2) A system
[transmission channels and supporting hardware and software] that connects several
remotely located computers via telecommunications.

OOP. object oriented programming. A technology for writing programs that are
made up of self-sufficient modules that contain all of the information needed to
manipulate a given data structure. The modules are created in class hierarchies so that
the code or methods of a class can be passed to other modules. New object modules
can be easily created by inheriting the characteristics of existing classes.

object. In object oriented programming, A self contained module [encapsulation] of
data and the programs [services] that manipulate [process] that data.

object code. A code expressed in machine language ["1"s and "0"s] which is
normally an output of a given translation process that is ready to be executed by a
computer.

object oriented design. A software development technique in which a system or
component is expressed in terms of objects and connections between those objects.

object oriented language. A programming language that allows the user to express
a program in terms of objects and messages between those objects. Examples include
C++, Smalltalk and LOGO.

object program. A computer program that is the output of an assembler or compiler.

operating system. Software that controls the execution of programs, and that
provides services such as resource allocation, scheduling, input/output control, and
data management. Usually, operating systems are predominantly software, but partial
or complete hardware implementations are possible.

Oracle. A relational database programming system incorporating the SQL
programming language. A registered trademark of the Oracle Corp.

original equipment manufacturer. A manufacturer of computer hardware.
PROM. programmable read only memory.

parallel. (1) Pertaining to the simultaneity of two or more processes. (2) Pertaining
to the simultaneous processing of individual parts of a whole, such as the bits of a
character or the characters of a word, using separate facilities for the various parts.
(3) Term describing simultaneous transmission of the bits making up a character,
usually eight bits [one byte].

parallel processing. See: multi-processing, multi- programming.

parameter. A constant, variable or expression that is used to pass values between
software modules.

parity. An error detection method in data transmissions that consists of selectively
adding a 1-bit to bit patterns [word, byte, character, message] to cause the bit patterns
to have either an odd number of 1-bits [odd parity] or an even number of 1-bits [even

parity].
Pascal. A high-level programming language designed to encourage structured
programming practices.

path. A sequence of instructions that may be performed in the execution of a
computer program.

peripheral device. Equipment that is directly connected a computer. A peripheral
device can be used to input data; e.g., keypad, bar code reader, transducer, laboratory
test equipment; or to output data; e.g., printer, disk drive, video system, tape drive,
valve controller, motor controller. Syn: peripheral equipment.

pixel. (1) In image processing and pattern recognition, the smallest element of a
digital image that can be assigned a gray level. (2) In computer graphics, the smallest
element of a display surface that can be assigned independent characteristics. This
term is derived from the term "picture element".

platform. The hardware and software which must be present and functioning for an
application program to run [perform] as intended. A platform includes, but is not
limited to the operating system or executive software, communication software,
microprocessor, network, input/output hardware, any generic software libraries,
database management, user interface software, and the like.

program. A sequence of instructions suitable for processing. Processing may
include the use of an assembler, a compiler, an interpreter, or another translator to
prepare the program for execution. The instructions may include statements and
necessary declarations.

program design language. A specification language with special constructs and,
sometimes, verification protocols, used to develop, analyze, and document a program
design.

programmable logic device. A logic chip that is programmed at the user's site.

programmable read only memory. A chip which may be programmed by using a
PROM programming device. It can be programmed only once. It cannot be erased
and reprogrammed. Each of its bit locations is a fusible link.

programming language. A language used to express computer programs.

PROM programmer. Electronic equipment which is used to transfer a program
[write instructions and data] into PROM and EPROM chips.

protocol. A set of semantic and syntactic rules that determines the behavior of
functional units in achieving communication.

prototyping. Using software tools to accelerate the software development process by
facilitating the identification of required functionality during analysis and design
phases. A limitation of this technique is the identification of system or software
problems and hazards.

pseudocode. A combination of programming language and natural language used to
express a software design. If used, it is usually the last document produced prior to
writing the source code.

qualification, operational. Establishing confidence that process equipment and sub-
systems are capable of consistently operating within established limits and tolerances.

qualification, process performance. Establishing confidence that the process is
effective and reproducible.

RAM. random access memory. Chips which can be called read/write memory, since
the data stored in them may be read or new data may be written into any memory
address on these chips. The term random access means that each memory location
[usually 8 bits or 1 byte] may be directly accessed [read from or written to] at
random.

ROM. read only memory. A memory chip from which data can only be read by the
CPU. The CPU may not store data to this memory. The advantage of ROM over
RAM is that ROM does not require power to retain its program. This advantage
applies to all types of ROM chips; ROM, PROM, EPROM, and EEPROM.

real time. Pertaining to a system or mode of operation in which computation is
performed during the actual time that an external process occurs, in order that the
computation results can be used to control, monitor, or respond in a timely manner to
the external process. Contrast with batch. See: conversational, interactive, interrupt,
on-line.

real time processing. A fast-response [immediate response] on-line system which
obtains data from an activity or a physical process, performs computations, and
returns a response rapidly enough to affect [control] the outcome of the activity or
process; €.g., a process control application. Contrast with batch processing.

record. (1) a group of related data elements treated as a unit. [A data element (field)
is a component of a record, a record is a component of a file (database)].

relational database. Database organization method that links files together as
required. Relationships between files are created by comparing data such as account
numbers and names. A relational system can take any two or more files and generate
a new file from the records that meet the matching criteria.

reliability. The ability of a system or component to perform its required functions
under stated conditions for a specified period of time.

requirement. (1) A condition or capability needed by a user to solve a problem or
achieve an objective. (2) A condition or capability that must be met or possessed by a
system or system component to satisfy a contract, standard, specification, or other
formally imposed documents. (3) A documented representation of a condition or
capability as in (1) or (2).

requirements phase. The period of time in the software life cycle during which the
requirements, such as functional and performance capabilities for a software product,
are defined and documented.

robustness. The degree to which a software system or component can function
correctly in the presence of invalid inputs or stressful environmental conditions. See:
software reliability.

routine. A subprogram that is called by other programs and subprograms. Note: This
term is defined differently in various programming languages.

SOPs. standard operating procedures.
SQL. structured query language.

safety. Freedom from those conditions that can cause death, injury, occupational
illness, or damage to or loss of equipment or property, or damage to the environment.

server. A high speed computer in a network that is shared by multiple users. It holds
the programs and data that are shared by all users.

simulation. (1) Use of an executable model to represent the behavior of an object.
During testing the computational hardware, the external environment, and even code
segments may be simulated. (2) A model that behaves or operates like a given system
when provided a set of controlled inputs. Contrast with emulation.

software. Programs, procedures, rules, and any associated documentation pertaining
to the operation of a system.

software characteristic. An inherent, possibly accidental, trait, quality, or property
of software; e.g., functionality, performance, attributes, design constraints, number of
states, lines or branches.

software design description. A representation of software created to facilitate
analysis, planning, implementation, and decision making. The software design
description is used as a medium for communicating software design information, and
may be thought of as a blueprint or model of the system.

software development process. The process by which user needs are translated into
a software product. the process involves translating user needs into software
requirements, transforming the software requirements into design, implementing the
design in code, testing the code, and sometimes installing and checking out the
software for operational activities.

software documentation. Technical data or information, including computer listings
and printouts, in human readable form, that describe or specify the design or details,
explain the capabilities, or provide operating instructions.

software element. A deliverable or in- process document produced or acquired
during software development or maintenance.

software engineering. The application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of software; i.e., the
application of engineering to software.

software item. Source code, object code, job control code, control data, or a
collection of these items. Contrast with software element.

software life cycle. Period of time beginning when a software product is conceived
and ending when the product is no longer available for use. The software life cycle is
typically broken into phases denoting activities such as requirements, design,
programming, testing, installation, and operation and maintenance.

software reliability. (1) the probability that software will not cause the failure of a
system for a specified time under specified conditions. The probability is a function
of the inputs to and use of the system in the software. The inputs to the system
determine whether existing faults, if any, are encountered. (2) The ability of a
program to perform its required functions accurately and reproducibly under stated
conditions for a specified period of time.

source code. (1) Computer instructions and data definitions expressed in a form
suitable for input to an assembler, compiler or other translator. (2) The human
readable version of the list of instructions [program] that cause a computer to perform
a task.

source program. A computer program that must be compiled, assembled, or
otherwise translated in order to be executed by a computer. See: source code.

specification. A document that specifies, in a complete, precise, verifiable manner,
the requirements, design, behavior,or other characteristics of a system or component,
and often, the procedures for determining whether these provisions have been
satisfied.

specification, product. A document which describes the as built version of the
software.

specification, requirements. A specification that documents the requirements of a
system or system component. It typically includes functional requirements,
performance requirements, interface requirements, design requirements [attributes
and constraints], development [coding] standards, etc.

spiral model. A model of the software development process in which the constituent
activities, typically requirements analysis, preliminary and detailed design, coding,
integration, and testing, are performed iteratively until the software is complete.

standard operating procedures. Written procedures [prescribing and describing the
steps to be taken in normal and defined conditions] which are necessary to assure
control of production and processes.

storage device. A unit into which data or programs can be placed, retained and
retrieved.

structured programming. Any software development technique that includes
structured design and results in the development of structured programs.

structured query language. A language used to interrogate and process data in a
relational database. Originally developed for IBM mainframes, there have been many
implementations created for mini and micro computer database applications. SQL
commands can be used to interactively work with a data base or can be embedded
with a programming language to interface with a database.

subprogram. A separately compilable, executable component of a computer
program. Note: This term is defined differently in various programming languages.

subroutine. A routine that returns control to the program or subprogram that called
it. Note: This term is defined differently in various programming languages.

support software. Software that aids in the development and maintenance of other
software; e.g., compilers, loaders, and other utilities.

syntax. The structural or grammatical rules that define how symbols in a language
are to be combined to form words, phrases, expressions, and other allowable
constructs.

system analysis. A systematic investigation of a real or planned system to determine
the functions of the system and how they relate to each other and to any other system.

system design. A process of defining the hardware and software architecture,
components, modules, interfaces, and data for a system to satisfy specified
requirements.

system life cycle. The course of developmental changes through which a system
passes from its conception to the termination of its use; e.g., the phases and activities
associated with the analysis, acquisition, design, development, test, integration,
operation, maintenance, and modification of a system. See: software life cycle.

system software. (1) Application- independent software that supports the running of
application software. (2) Software designed to facilitate the operation and
maintenance of a computer system and its associated programs; e.g., operating
systems, assemblers, utilities.

terminal. A device, usually equipped with a CRT display and keyboard, used to send
and receive information to and from a computer via a communication channel.

test. An activity in which a system or component is executed under specified
conditions, the results are observed or recorded and an evaluation is made of some
aspect of the system or component.

test phase. The period of time in the software life cycle in which the components of
a software product are evaluated and integrated, and the software product is evaluated
to determine whether or not requirements have been satisfied.

test procedure. A formal document developed from a test plan that presents detailed
instructions for the setup, operation, and evaluation of the results for each defined
test.

testing. (1) The process of operating a system or component under specified
conditions, observing or recording the results, and making an evaluation of some
aspect of the system or component. (2) The process of analyzing a software item to
detect the differences between existing and required conditions, i.e. bugs, and to
evaluate the features of the software items.

testing, compatibility. The process of determining the ability of two or more systems
to exchange information. In a situation where the developed software replaces an
already working program, an investigation should be conducted to assess possible
comparability problems between the new software and other programs or systems

testing, unit. (1) Testing of a module for typographic, syntactic, and logical errors,
for correct implementation of its design, and for satisfaction of its requirements. (2)
Testing conducted to verify the implementation of the design for one software
element; e.g., a unit or module; or a collection of software elements.

time sharing. A mode of operation that permits two or more users to execute
computer programs concurrently on the same computer system by interleaving the
execution of their programs. May be implemented by time slicing, priority-based
interrupts, or other scheduling methods.

top-down design. Pertaining to design methodology that starts with the highest level
of abstraction and proceeds through progressively lower levels.

transaction. (1) A command, message, or input record that explicitly or implicitly
calls for a processing action, such as updating a file. (2) An exchange between and
end user and an interactive system. (3) In a database management system, a unit of
processing activity that accomplishes a specific purpose such as a retrieval, an
update, a modification, or a deletion of one or more data elements of a storage
structure.

unambiguous. (1) Not having two or more possible meanings. (2) Not susceptible to
different interpretations. (3) Not obscure, not vague. (4) Clear, definite, certain.

unit. (1) A separately testable element specified in the design of a computer software
element. (2) A logically separable part of a computer program. Syn: module.

UNIX. A multitasking, multiple-user (time-sharing) operating system developed at
Bell Labs to create a favorable environment for programming research and
development.

utility program. A computer program in general support of the processes of a
computer; e.g., a diagnostic program, a trace program, a sort program.

utility software. Computer programs or routines designed to perform some general
support function required by other application software, by the operating system, or
by the system users. They perform general functions such as formatting electronic
media, making copies of files, or deleting files.

VV&T. validation, verification, and testing.

valid input. Test data that lie within the domain of the function represented by the
program.

validation. (1) Establishing documented evidence which provides a high degree of
assurance that a specific process will consistently produce a product meeting its
predetermined specifications and quality attributes.

validation, software. Determination of the correctness of the final program or
software produced from a development project with respect to the user needs and
requirements. Validation is usually accomplished by verifying each stage of the
software development life cycle.

verification, software. In general the demonstration of consistency, completeness,
and correctness of the software at each stage and between each stage of the
development life cycle. See: validation, software.

virus. A program which secretly alters other programs to include a copy of itself, and
executes when the host program is executed. The execution of a virus program
compromises a computer system by performing unwanted or unintended functions
which may be destructive.

WAN. wide area network.

watchdog timer. A form of interval timer that is used to detect a possible
malfunction.

CONCLUSION

The manual “Professional English for Software Developers” supplies
the key lexical and grammatical material for teaching and learning English
for specific purposes in IT sphere of specialization.

The teacher’s work with “Professional English for Software
Development” and the assessment of students’ knowledge have shown its
conformity to real interests, psychological needs and abilities of the senior
and graduate students of Ufa State Aviation Technical University. The
proposed textbook is considered as a means of optimizing the learning
process of foreign language professional communication of the students
and graduate students. It has been complied according to the State
Educational Standard and requirements of the foreign language program
for technical universities.

Various tasks, dialogues, role-plays and topics suggested for
presentations and discussions proved to be the effective means for
improving language and social and cultural skills in different kinds of
speech activity. As we can see this textbook is designed to work under the
guidance of a teacher who organizes the educational process in the
classroom and selects tasks for independent extracurricular work.

We hope that ‘Professional English for Software Developers > will be
interesting and useful in mastering students’ language proficiency.

REFERENCES AND INFORMATION RESOURCES

1. What is Software Engineering? [Onexmponnwviti pecypc]: —
URL: https://www.castsoftware.com/glossary/what-is-software-engineering-
definition-types-of-basics-introduction (nara o6pamenus 20.02.22)

2. Software. [Onexmponnsiu pecypc]: —
URL: https://searchapparchitecture.techtarget.com/definition/software (mara
oOpamienus 25.02.22)

3. Operating system, its Functions and Characteristics. [Dnexkmponnwiii pecypc]: —
URL: https://medium.com/computing-technology-with-it-
fundamentals/operating-system-its-functions-and-characteristics-
c0946e4215c6 (nara obpamenus 28.02.22)

4. Types of Operating Systems. [Onexkmpounwiti pecypc]: =
URL.: https://searchapparchitecture.techtarget.com/definition/software
(mara obparenus 28.02.22)

5. Types of Operating Systems. [Onexkmpounsiti pecypc]: —

URL.: https://www.tutorialspoint.com/operating system/os_types.htm
(mara obpamenus 1.03.22)

6. Software and its types. [Onexmponnwiii pecypc]: —
URL: https://www.geeksforgeeks.org/software-and-its-types.htm

(mara obpamenus 3.03.22)

7. Coding vs Programming: Top Differences. [Onexmponunswiii pecypc]: —
URL: https://www.lighthouselabs.ca/en/blog/coding-vs-programming
(mata oopamenus 3.03.22)

8. The first intuitive programming language for quantum computers.
[Onexkmponnwiii pecypc]: -
URL: https://www.sciencedaily.com/releases/2020/06/200615115820.htm
(mara obparenus 28.02.22)

9. How the brain is programmed for computer programming?
[Onexmponnwiii pecypc]: —
URL.: https://www.sciencedaily.com/releases/2021/01/210128094229.htm
(mara o6pamenus 8.03.22)

10.Jan Sommerville. Software Engineering. Tenth Edition. Pearson. 2016. —
PP.200-210.

11.Software Engineering Discussion. [Onexmpounwviti pecypc]: — —
URL: https://www.goodreads.com/topic/show/18012721-how-to-become-an-
expert-software-engineer-and-get-any-job-you-want (mata o6pamenunst 7.04.22)

12.Programming Languages. [Onexmponnwiii pecypc]: —
URL: https://en.wikipedia.org/wiki/Programming_language (nata o6pamieHus
8.03.22)

13.Introduction to programming. [Onexkmponnsiii pecypc]: — URL:
https://www.bbc.co.uk/bitesize/guides/zts8d2p/test (nara oopamenus 14.03.22)

14.Definition: object-oriented programming. [Oaekmponnwviii pecypc]: —

URL: https://www.computerlanguage.com/ results.php?definition=object-
oriented+programming (mata obpamienus 24.03.22)

15.Computer Programming Language. [Oanexmpounwiti pecypc|: —
URL: https://www britannica.com/technology/computer-programming-
language/ (nata obpamenus 24.03.22)

16. TypeScript for the New Programmer. [Onexkmpounnwviii pecypc]: —

URL.: https://www.typescriptlang.org/docs/handbook/typescript-from-
scratch.html (nata ob6pamenus 20.03.22)

17.Visual Basic. [Onexmponnwiii pecypc]: —
URL: https://www britannica.com/technology/computer-programming-
language/Visual-Basic. (nara obpamenus 20.03.22)

18.Data Structures Tutorial. [Onexkmponnsiii pecypc]: —

URL: https://www.javatpoint.com/data-structure-tutorial (maTa oOpameHus
25.03.22)
19.C Sharp (programming language). [Onekmponuvui pecypc]: — —

URL.: https://en.wikipedia.org/wiki/C_Sharp (programming language)
(mata obpamenus 1.04.22)
20.Web Development. [Onexmpornwiii pecypc]: — URL:

https://en.wikipedia.org/wiki/Web_development#:~:text=Web%20developmen
t,-From%20Wikipedia%2C%?20the (nara oopamenus 1.04.22)

21.What is web development? [Onexmpounnwiii pecypc|: —
URL: https://careerfoundry.com/en/blog/web-development/
(mata obpamenus 11.04.22)

22.The Anatomy of a Web Page: 14 Basic Elements. [Onexmponnsiii pecypc]: —
URL: https://blog.tubikstudio.com/anatomy-of-web-page/
(mata oOpamenus 1.04.22)

23.What is Application Development? - 3 Main Types of Application
Development Methodologies. [Onexmponnwiii pecypc]: -
URL: https://kissflow.com/low-code/rad/types-of-application-development-
methodologies (nara oopamenus 3.04.22)

24. Aurnuiickuit s3pik. Undopmanmonnsie Texnonorun = English for
Information Technology: y4yebHOe mocoOue ajis CTYJAECHTOB TEXHUYECKHX W
WH)XEHEepHO-dKOoHOMUYeckux creruanbHoctedt / M. 10. Banuk, O. A. Jlanko,
H. B. CypynroBuu. — Muunck : BHTY, 2016. — 157 c.

25.Language types. [Onexkmponnwiii pecypc/: — URL:
https://www.britannica.com/technology/computer-programming-language
(mata oOpamenus 3.04.22)

26.Game Engine. [Onexkmponnsiii pecypc]: — URL:
https://en.wikipedia.org/wiki/Game engine (nata oOpamenus 23.02.22)
27.Artificial Intelligence. [Onexmponnwiii pecypc]: —

URL: https://www.techtarget.com/searchenterpriseai/definition/Al-Artificial-
Intelligence (nata oOparmenus 23.03.22)

28.Language Types. Education-Oriented Languages. [Onexmponnuiti pecypc]: —
URL: https://www britannica.com/technology/computer-programming-
language (nata obpamenus 23.04.22)

29.What is OOAD(Object-oriented analysis and design)? [Onexmponnsiii
pecypc]: — URL: https://www.brainkart.com/article/What-is-OOAD(Object-
oriented-analysis-and-design)- 9969/(nara oOparenus 23.04.22)

30.Rendering (computer graphics). [Onexmpounnsiii pecypc]: —
URL.: https://en.wikipedia.org/wiki/Rendering (computer graphics)
(mara obpamenus 5.04.22)

31.Understanding the Four Types of Artificial Intelligence. [Onexmponnsiii
pecypc]: — URL: https://www.govtech.com/computing/understanding-the-four-
types-of-artificial-intelligence.html (nata obpamenus 16.04.22)

32.Linux System - Basic Concepts. [Onekmpounwiii pecypc]: —
URL: https://www .brainkart.com/article/Linux-System---Basic-
Concepts 9864/ (nata oopamenus 7.04.22)

33.A Developer’s Guide to Communicating With Clients. [Onexmponnuviii
pecypc]: — URL: https://inchoo.net/life-at-inchoo/developers-guide-
communicating-clients/ (qata o6pamienus 30.03.22)

34.0bject-Oriented-Programming. [Onexmponnwiii pecypc]: —
URL.: https://www.brainkart.com/article/Object-Oriented-
Programming 10384/ (nara o6pamenus 30.03.22)

35.Role of process in software quality. [Onekmponnwvui pecypc]: —
URL: https://www.brainkart.com/article/Role-of-process-in-software-
quality 9136/ (mata oOpamenus 1.04.22)

36.Mobile Computing Applications. [Onekmponnwviti pecypc|: —
URL: https://www .brainkart.com/article/Mobile-Computing-
Applications_ 9874/ (mara obpamenus 10.04.22)

37.AHTIIO-pYCCKUIA M PYCCKO-aHTJIUUCKUN ClloBapb. [Dnekmpouusiii pecypc]: —
URL: https://www.multitran.com/

38.Computer Glossary. [Onexmponnuwiii pecypc]: —
URL: https://www.tutorialspoint.com/computer glossary.htm

	PROFESSIONAL ENGLISH

FOR SOFTWARE DEVELOPERS
	PREFACE
	UNIT 1. Introduction to Software Engineering
	UNIT 2. What is Software? Types of Software
	UNIT 3. Operating System
	UNIT 4. What is Computer Programming? Coding vs. Programming
	UNIT 5. Programming Languages
	UNIT 6. Object-oriented Programming (OOP)
	UNIT 7. Elements of Programming. Control Structures
	UNIT 8. Elements of Programming. Data Structures
	UNIT 9. Web – Development. Types of Web – development
	UNIT 10. Some Basic Elements of a Web Page
	UNIT 11. Application Development and Types of Application Development Methodologies
	UNIT 12. Game Engine
	COMPUTER TERMS GLOSSARY
	CONCLUSION
	REFERENCES AND INFORMATION RESOURCES

